

Part number: 1 987 721 540 Part number: 1 987 721 074

Part number: 1 987 721 021

Sensors for angles, rotation rate, speed, pressure, air-mass flow rate, oxygen, temperature, structure-borne sound

The Bosch Program for industrial applications

Have we succeeded in arousing your

1 987 721 021/201210

AA/MKI2 - 10.2012 - en

© 2012 Robert Bosch GmbH Automotive Aftermarket Postfach 41 09 60 76225 Karlsruhe

Token fee: € 5,00

www.bosch.de/aa

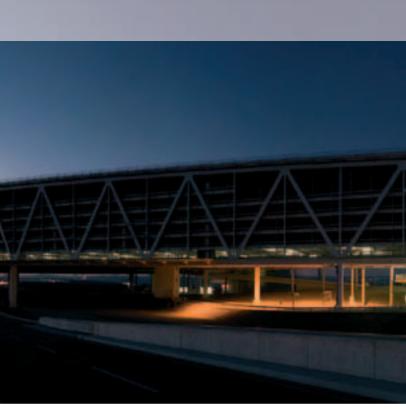
Editoral closing: 30.08.2012 Subject to change without notice! Please direct questions and comments to our Authorized Representative in your country. This edition supersedes all previous editions.

2013 | 2014

Sensors the vehicle's "Sensory System"

Vehicle electronics are constantly gaining in significance. Here, sensors are the vehicle's "sensory system" for travel, angle, speed, velocity, acceleration, vibration, pressure, flow rate, gas concentration, temperature and other influencing variables. Their signals have, in the meantime, become indispensable for many control and regulating functions of the various management systems for engine and vehicle control, safety and comfort. Electronic data processing has ultimately made it possible to evaluate the stated influencing variables faster, and to condition them for the required vehicle functions.

These sensors, which have demonstrated their value in millions of vehicles covering numerous kilometers under rough vehicle service conditions, also harbor a tremendous potential for industrial applications. Particularly in those areas dependent on high reliability, and where low prices can be achieved through high-volume production.


The areas in which they can be used are almost limitless: wherever tests, closed and open-loop controls, and monitoring are required; wherever computers have to be "fed" with physical data, or even simply wherever automatic switch-on of the heating is required in the cold or of the air conditioner when temperatures climb. Constant further development and refinement of the sensors by Bosch, including their miniaturization, means that Bosch is well equipped for tomorrow's challenges and is able to actively participate in shaping state-of-the-art technology.

Our philosophy

With the quality, value for money and function of our products, we Bosch is never far from its clients. We are close to vehicle manuwish to set standards and capture a peak position in the market. By facturers, working in close cooperation with them in the develworking towards economical solutions, we reinforce our innovative opment of new solutions. But we are also close to the users of strength and thus our future. For our customers, we are an active, sensors, who can enjoy competent service all over the world from receptive partner who is aware of their goals and gives complete nearly 10,000 Bosch Service Agents. Bosch has agents in 130 counsatisfaction. We react rapidly and flexibly to the requirements tries. In our international alliance, we develop and produce sensors of our customers and colleagues. We accomplish our agreed tasks in Europe, the USA and Asia. creatively, with the emphasis on quality and on the protection of the environment. Our technology

Our staff

We prefer target-oriented team-work, and treat problems as an opportunity for continual improvement. All management personnel delegate responsibility and support their workers by stipulating clear targets and by the appropriate control of resources. They set an example in putting our philosophy into practice.

Our organization

From drafting through design to production, we use the latest techniques and facilities, such as

- Finite-element calculations,
- Fully automated production lines,
- Quality assurance by computer-aided, statistical closed-loop process control and 100% testing of all parameters which are relevant for correct function.

Our contribution to environmental protection

Our sensors are made from materials which can be recycled, which, thanks to thermal and magnetic separation processes, can be reintroduced into the material cycle. We use re-cyclable cardboard packaging containing a high proportion of recycled paper, or, on request, reusable packaging.

Content

3	Techniques and applications	
6	CAN-Bus	
Angular-position sensors		
8	Steering-angle sensor	
12	Throttle valve angle sensor	
Yaw sensors		
14	Yaw sensor with CAN interface	
Rotational-speed sensors		
18	Hall speed sensor	
Acceleration sensors		
30	Piezoelectric vibration sensor	
36	Signal evaluation for vibration sensors	
Pressure sensors		
38	Differential pressure sensor	
44	Absolute-pressure sensor	
64	High-pressure sensor	
78	Fressure sensors for CNG and LPG	
NTC temperature sensors:	-40° to 130°C	
88	NTC temperature sensors	
Air-mass meters		
96	Hot-film air mass meter, type HFM 5	
104	Hot-film air mass meter, type HFM 6	
110	Hot-film air mass meter, type HFM 7	
Lambda sensors		
112	Type LSU 1	
116	Type LSU 4.9	
General Information		
100	List of part numbers	
120		1
120 123	Bosch contacts worldwide	

We reserve the right to make technical changes.

do

en

Elektronischer Katalog für Kraftfahrzeug-Ausrüstung **Electronic Catalogue** for Automotive Parts

fr

Catalogue électronique

de pièces détachées

et de rechange

it

Catalogo elettronico per ricambi di automobili

Catálogo electrónico de los componentes del automóvil

es

Einfacher und schneller Zugriff auf Kfz-Ausrüstungsdaten von Bosch in 18 Sprachen.

Easy and quick access to vehicle application data from Bosch in 18 languages.

Accès facile et rapide aux données de rechange automobile Bosch – en 18 langues.

Ricerca semplice e veloce dei dati Bosch di equipaggiamento veicoli in 18 lingue.

Fácil y rápido acceso a la información de equipamiento Bosch para vehículos en 18 idiomas.

Techniques and applications

This catalog features the most important technical data required for selecting a given sensor. To date, the sensors listed have all been used in automotive applications, but their universal and highly versatile characteristics also make them ideally suitable for industrial applications. For instance in:

- Manufacturing engineering
- Mechanical engineering
- ► Automation
- Materials handling and conveying
- ► Heating and air-conditioning
- Chemical and process engineering
- Environmental and conservation technology

► Installation and plant engineering Brief descriptions and examples of application are to be found in the Table below. For the applications listed below, prior clarification of the technical suitability is imperative. This Catalog only lists those products which are available from series manufacture. If your problem cannot be solved with this range of products, please inform of us of your requirements using the Enquiry Data Sheet.

Sensors	Automotive application	Examples of non-automotive applications
Angular position sensors measure simple angular settings and changes in angle.	Throttle-valve-angle measurement for engine management on gasoline (SI) engines.	Door/window opening angle, setting-lever angles in monitoring and control installations.
Rotational-speed sensors measure rotational speeds, positions and angles in excess of 360°.	Wheel-speed measurement for ABS/TCS, engine speeds, positioning angle for engine management, measurement of steering-wheel angle, distance covered, and curves/bends for vehicle navigation systems.	Proximity or non-contact measurement of rotational speed, displacement and angular measurement, definition of end and limit settings for industrial machines, robots, and installations of all types.
Spring-mass acceleration sensors measure chan- ges in speed, such as are common in road traffic.	Registration of vehicular acceleration and deceleration. Used for the Antilock Braking System (ABS) and the Traction Control System (TCS).	Acceleration and deceleration measurement for safety, control, protective systems in lifts, cable railways, fork-lift trucks, conveyor belts, machines, wind power stations.
Bending-beam acceleration sensors register shocks and vibration which are caused by impacts on rough/unpaved road surfaces or contact with kerbstones.	For engine management, detection of vibration on rough/unpaved road surfaces.	Forced switch-off for machines, industrial robots, manufacturing plant, and gaming machines in case of sudden acceleration or deceleration caused by shock or impact.
Piezoelectric acceleration sensors measure shocks and vibration which occur when vehicles and bodies impact against an obstacle.	Impact detection used for triggering airbags and belt tighteners.	Detection of impact in monitoring/surveillance installations, detection of foreign bodies in combine harvesters, filling machines, and sorting plants. Registration of score during rifleman competitions.
Yaw sensors measure skidding movements, such as occur in vehicles under road traffic conditions.	Used on the vehicle dynamics control (Electronic Stability Program, ESP) for measuring yaw rate and lateral acceleration, and for vehicle navigation sensors.	Stabilization of model vehicles and airplanes, safety circuits in carousels and other entertainment devices on fairgrounds etc.
Piezoelectric vibration sensors measure structure-borne vibrations which occur at engines, machines, and pivot bearings.	Engine-knock detection for anti-knock control in engine-management systems.	Machine-tool safety, cavitation detection, pivot- bearing monitoring, structure-borne-noise detection in measurement systems.
Absolute-pressure sensors measure the pressure ranges from about 50% to 500% of the earth's atmospheric pressure.	Manifold vacuum measurement for engine manage- ment. Charge-air-pressure measurement for charge- air pressure control, altitude-pressure-dependent fuel injection for diesel engines.	Pressure control in electronic vacuum cleaners, monitoring of pneumatic production lines, meters for air-pressure, altitude, blood pressure, manometers, storm-warning devices.
Differential-pressure sensors measure differential gas pressures, e.g. for pressure- compensation purposes.	Pressure measurement in the fuel tank, evaporative-emissions control systems.	Monitoring of over and underpressure. Pressure limiters, filled-level measurement.
Temperature sensors measure the temperature of gaseous materials and, inside a suitable housing, the temperatures of liquids in the temparature range of the earth's atmosphere and of water.	Display of outside and inside temperature, control of air conditioners and inside temperature, control of radiators and thermostats, measurement of lube-oil, coolant, and engine temperatures.	Thermometers, thermostats, thermal protection, frost detectors, air-conditioner control, temperature and central heating, refrigerant-temperature monitoring, regulation of hot-water and heat pumps.
Lambda oxygen sensors determine the residual oxygen content in the exhaust gas.	Control of A/F mixture for minimization of pollutant emissions on gasoline and gas engines.	Pollutants reduction during combustion, smoke measurement, gas analysis.
Air-mass meters measure the flow rate of gases.	Measurement of the mass of the air drawn in by the engine.	Flow-rate measurement for gases on test benches and in combustion plant.

IP degres of protection

Valid for the electrical equipment

- of road vehicles as per DIN 40050 (Part 9).
- ▶ Protection of the electrical equipment inside the enclosure against the effects of solid foreign objects including dust.
- ▶ Protection of the electrical equipment inside the enclosure against the ingress of water.
- ▶ Protection of persons against contact with dangerous parts, and rotating parts, inside the enclosure.

Structure of the IP code

Code letters	2	<u>1)</u>	3	<u> </u>	C	<u>M</u>
06 or letter X						
Second characteristic numeral						
09 or letter X						
Additional letter (optional)						
A, B, C, D						
Supplementary letter (optional)						
M, S						
K ¹⁾						

If a characteristic numeral is not given, it must be superseded by the letter "X" (i.e. "XX" if both characteristic numerals are not given). The supplementary and/or additional letters can be omitted at will, and need not be superseded by other letters.

¹⁾ The supplementary letter "K" is located either directly after the first characteristic numerals 5 and 6, or directly after the second characteristic numerals 4, 6 and 9.

²⁾ During the water test. Example: IP16KB protection against the ingress of solid foreign bodies with diameter ≥ 50 mm, protection against high-pressure hose water, protection against access with a finger.

Comments IP code

1st charac- teristic numeral and sup- plementary letter K	Protection of electrical equip- ment against ingress of solid for- eign objects	Persons	2nd charac- teristic numeral and sup- plementary letter K	Protection of elec- trical equipment against the ingress of water	Additional letter (optional)	Protection of persons against contact with hazardous parts	Additional letter (optional)	
0	Non-protected	Non-protected	0	Non-protected	А	Protection against contact with back of hand	Μ	Movable parts of the equipment are in motion ²⁾
1	Protection against foreign bodies Ø ≥ 50 mm	Protection against contact with back of hand	1	Protection against vertically dripping water	В	Protection against contact with finger	S	Movable parts of the equipment are stationary ²⁾
2	Protection against foreign bodies Ø ≥ 12.5 mm	Protection against contact with finger	2	Protection against dripping water (at an angle of 15°)	С	Protection against contact with tool	К	For the electrical equipment of road vehicles
3	Protection against foreign bodies Ø ≥ 2.5 mm	Protection against contact with tool	3	Protection against splash water	D	Protection against contact with wire		
4	Protection against foreign bodies Ø ≥ 1.0 mm	Protection against contact with wire	4	Protection against spray water				
5К	Dust-protected	Protection against contact with wire	4К	Protection against high- pressure spray water				
6К	Dust-proof	Protection against contact with wire	5	Protection against jets of water				
			6	Protection against powerful jets of water				
			6К	Protection against high-pressure jets of water				
			7	Protection against temporary immer- sion				
			9	Protection against continuous immer- sion				
			9К	Protection against high-pressure/ steam-jet cleaners				

CAN-Bus Controller Area Network

Present-day motor vehicles are equipped with a large number of electronic control units (ECUs) which have to exchange large volumes of data with one another in order to perform their various functions. The conventional method of doing so by using dedi-

Applications

There are four areas of application for CAN in the motor vehicle, each with its own individual requirements:

Real-time applications

Real-time applications, in which electrical systems such as Motronic, transmission-shift control, electronic stability-control systems are networked with one another, are used to control vehicle dynamics. Typical data transmission rates range from 125 kbit/s to 1 Mbit/s (high-speed CAN) in order to be able to guarantee the realtime characteristics demanded.

Multiplex applications

Multiplex applications are suitable for situations requiring control and regulation of body-component and luxury/convenience systems such as air conditioning, central locking and seat adjustment. Typical data transmission rates are between 10 kbits and 125 kbit/s (low-speed CAN).

Mobile-communications applications

Mobile-communications applications connect components such as the navigation system, cellular phone or audio system with central displays and controls. The basic aim is to standardize control operations and to condense status information so as to minimize driver distraction. Data transmission rates are generally below 125 kbit/s; whereby direct transmission of audio or video data is not possible.

Diagnostic applications

Diagnostic applications for CAN aim to make use of existing networking for the diagnosis of the ECUs incorporated in the network. The use of the "K" line (ISO 9141), which is currently the normal practice, is then no longer necessary. The data rate envisaged is 500 kbit/s. cated data lines for each link is now reaching the limits of its capabilities. On the one hand, it makes the wiring harnesses so complex that they become unmanageable, and on the other the finite number of pins on the connectors becomes the limiting factor

Bus configuration

CAN operates according to the multimaster principle, in which a linear bus structure connects several ECUs of equal priority rating (Fig. ①). The advantage of this type of structure lies in the fact that a malfunction at one node does not impair bus-system access for the remaining devices. Thus the probability of a total system failure is substantially lower than with other logical architectures (such as ring or active star structures). When a ring or active star structure is employed, failure at a single node or at the CPU is sufficient to cause a total failure.

Content-based addressing

Addressing is message-based when using CAN. This involves assigning a fixed identifier to each message. The identifier classifies the content of the message (e.g., engine speed). Each station processes only those messages whose identifiers are stored in its acceptance list (message filtering, Fig. (2)). Thus CAN requires no station addresses for data transmission, and the nodes are not involved in administering system configuration. This facilitates adaptation to variations in equipment levels.

Logical bus states

The CAN protocol is based on two logical states: The bits are either "recessive" (logical 1) or "dominant" (logical 0). When at least one station transmits a dominant bit, then the recessive bits simultaneously sent from other stations are overwritten.

Priority assignments

The identifier labels both the data content and the priority of the message being sent. Identifiers corresponding to low binary numbers enjoy a high priority and vice versa. for ECU development. The solution is to be found in the use of specialized, vehicle-compatible serial bus systems among which the CAN has established itself as the standard.

Bus access

Each station can begin transmitting its most important data as soon as the bus is unoccupied. When several stations start to transmit simultaneously, the system responds by employing "Wired-AND" arbitration to sort out the resulting contentions over bus access. The message with the highest priority is assigned first access, without any bit loss or delay. Transmitters respond to failure to gain bus access by automatically switching to receive mode; they then repeat the transmission attempt as soon as the bus is free again.

Message format

CAN supports two different data-frame formats, with the sole distinction being in the length of the identifier (ID). The standard-format ID is 11 bits, while the extended version consists of 29 bits. Thus the transmission data frame contains a maximum of 130 bits in standard format, or 150 bits in the extended format. This ensures miminal waiting time until the subsequent transmission (which could be urgent). The data frame consists of seven consecutive bit fields (Fig. ③):

"Start of frame"

indicates the beginning of a message and synchronizes all stations.

"Arbitration field"

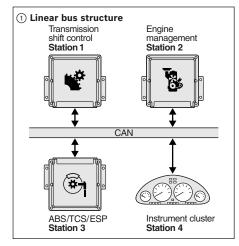
consists of the message's identifier and an additional control bit. While this field is being transmitted, the transmitter accompanies the transmission of each bit with a check to ensure that no higher-priority message is being transmitted (which would cancel the access authorization). The control bit determines whether the message is classified under "data frame" or "remote frame".

"Control field"

contains the code for number of data bytes in "Data Field".

"Data field's"

information content comprises between 0 and 8 bytes. A message of data length 0 can be used to synchronize distributed processes. **"CRC field"**


(Cyclic Redundancy Check) contains the check word for detecting possible transmission interference.

"Ack field"

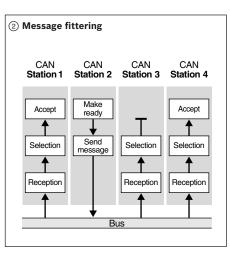
contains the acknowledgement signals with which all receivers indicate receipt of noncorrupted messages.

"End of frame"

marks the end of the message.

Transmitter initiative

The transmitter will usually initiate a data transfer by sending a data frame. However, the receiver can also request data from the transmitter. This involves the receiver sending out a "remote frame". The "data frame" and the corresponding "remote frame" have the same identifier. They are distinguished from one another by means of the bit that follows the identifier.

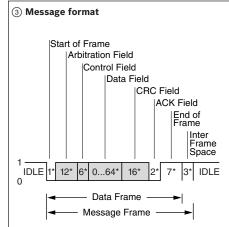

Error detection

CAN incorporates a number of monitoring features for detecting errors. These include:

- 15 Bit CRC (Cyclic Redundancy Check): Each receiver compares the CRC sequence which it receives with the calculated sequence.
- Monitoring: Each transmitter compares transmitted and scanned bit.
- Bit stuffing: Between "start of frame" and the end of the "CRC field", each "data frame" or "remote frame" may contain a maximum of 5 consecutive bits of the same polarity. The transmitter follows up a sequence of 5 bits of the same polarity by inserting a bit of the opposite polarity in the bit stream; the receivers eliminate these bits as the messages arrive.
- Frame check: The CAN protocol contains several bit fields with a fixed format for verification by all stations.

Error handling

When a CAN controller detects an error, it aborts the current transmission by sending an "error flag". An error flag consists of 6 dominant bits; it functions by deliberately violating the conventions governing stuffing and/or formats.



Fault confinement with local failure

Defective stations can severely impair the ability to process bus traffic. Therefore, the CAN controllers incorporate mechanisms which can distinguish between intermittent and permanent errors and local station failures. This process is based on statistical evaluation of error conditions.

Implementations

In order to provide the proper CPU support for a wide range of different requirements, the semiconductor manufacturers have introduced implementations representing a broad range of performance levels. The various implementations differ neither in the message they produce, nor in their arrangements for responding to errors. The difference lies solely in the type of CPU support required for message administration. As the demands placed on the ECU's processing capacity are extensive, the interface controller should be able to administer a large number of messages and expedite data communications

with, as far as possible, no demands on the CPU's computational resources. Powerful CAN controllers are generally used in this type of application. The demands placed on the controllers by multiplex systems and present-day mobile communications are more modest. For that reason, more basic and less expensive chips are preferred for such uses.

Standardization

CANs for data exchange in automotive applications have been standardized both by the ISO and the SAE – in ISO 11519-2 for low-speed applications \leq 125 kbit/s and in ISO 11898 and SAE J 22584 (cars) and SAE J 1939 (trucks and busses) for high-speed applications >125 kbit/s. There is also an ISO standard for diagnosis via CAN (ISO 15765 – Draft) in the course of preparation.

Steering-angle sensor

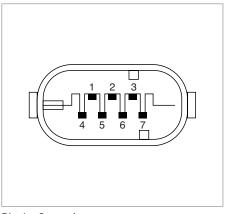
Measurement of angles from -780° to +780°

- ▶ "True Power on" function
- Multiturn capability
- CAN interface

Design and operation

The steering column drives two measurement gears by way of a gear wheel. Magnets are incorporated into the measurement gears. AMR elements, the resistance of which changes as a function of the magnetic field direction, detect the angular position of the magnets. The analog measured values are supplied to the microprocessor via an A/D converter. The measurement gears have different numbers of teeth and their rotational position thus changes at different rates. The total steering angle can be calculated by combining the two current angles. After several turns of the steering wheel, the two measurement gears have returned to their original positions. This measurement principle can therefore be used to cover a measuring range of several turns of the steering wheel without the need for a revolution counter. The steering angle is output as an absolute value over the total angle range (turning range) of the steering column. A special feature of the sensor is the correct angle output immediately after switching on the ignition without moving the steering wheel (True Power On). Steering angle and velocity are output via CAN.

Application

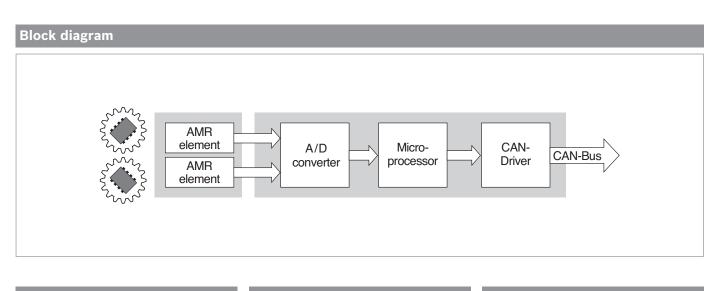

The steering-angle sensor was developed for use in electronic stability programs (ESP). Integrated plausibility checks and special self-diagnosis functions make the steering-wheel angle sensor suitable for use in safety systems.

Further areas of application

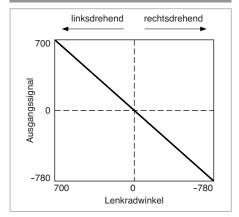
Using the standardized CAN bus, the steering wheel angle information can be utilized, for example for chassis control, navigation and electrical power- steering systems.

Different types of mechanical connection and electrical interface versions are available on request.

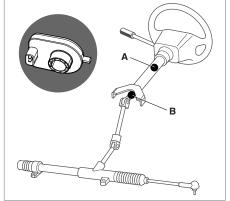
Pin assignment



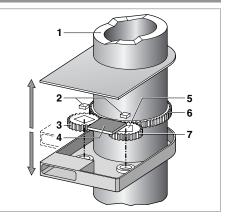
Pin 1 Ground Pin 2 12 V Pin 3 CAN High Pin 4 CAN Low Pin 5 -Pin 6 -Pin 7 -


Technical data

Storage temperature - 40 ...+ 50 °C


Steering-angle sensor Measurement of angles from -780° to +780°

Characteristic curve



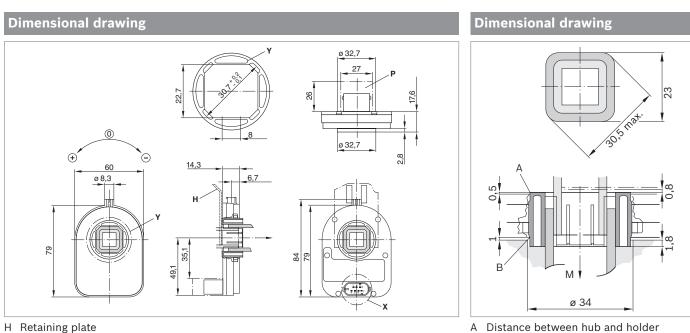
Attachment options

- А Steering-column switch
- B Steering column

Design and operation

- 1 Steering column
- 2 AMR measurement cells
- 3 Gear wheel with m teeth
- 4 Evaluation electronics
- 5 Magnets
- 6 Gear wheel with n>m teeth
- 7 Gear wheel with m+1 teeth

Steering-angle sensor Measurement of angles from -780° to +780°


Part number

Technical data	
Measuring range, angle	- 780+ 780 °
Measuring range, steering-angle velocity	0 1016 °/s
Sensitivity and resolution over measuring range, angle	0,1 °
Sensitivity and resolution over measuring range,	
steering-angle velocity	4 °/s
Non-linearity over measuring range	- 2,5+ 2,5 °
Hysteresis over measuring range	0 5 °
Steering-wheel angle velocity, maximum	± 2000 °/s
Steering-wheel angle velocity, displayed	0 1016 °/s
Operating temperature	- 40+ 85 °C
Supply voltage	12 V nominal
Supply-voltage range U_v	8 16 V
Current consumption at 12 V	< 150 mA

0 265 005 411

Other designs on request.

H Retaining plate

Space for mating connector and wiring harness Ρ

Х Pin assignment B Distance between steering-angle sensor and steering-column assembly flange

M Fitting direction

Accessories		Part number
Connector housing	7-pin	1 928 404 025
Contact pins	For Ø 0.5 - 0.7 mm²; Contents: 100 x	1 928 498 001

Other designs on request.

Notes

Throttle valve angle sensor

Measurement of angles up to 86°

- Potentiometric angular-position sensors with linear characteristic curve.
- Sturdy design for exacting demands.
- Compact size.

Design and operation

The throttle-valve angular-position sensor is a potentiometric angular-position sensor with a linear characteristic curve. It is used with fuel-injection engines to convert the angle of rotation of the throttle valve into a proportional voltage ratio. To do so, the rotor with its special wipers connected to the throttle-valve shaft travels along corresponding resistance tracks, with the position of the throttle valve being converted into the above-mentioned voltage ratio. The throttle-valve angularposition sensors have no return spring.

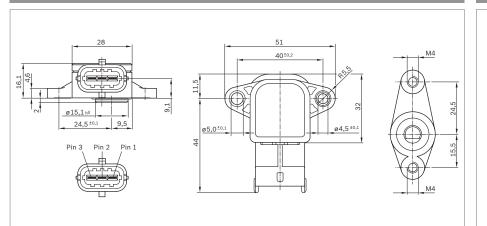
Explanation of characteristic quantities

- $U_{\rm A}$ Output voltage
- $U_{\rm v}$ Supply voltage
- ϕ Angle of rotation
- $U_{\scriptscriptstyle\rm A1}$ Output-voltage characteristic curve 2
- $U_{\rm A2}$ Output-voltage characteristic curve 3

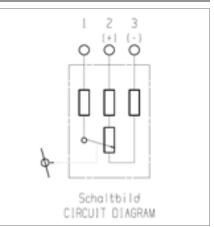
Application

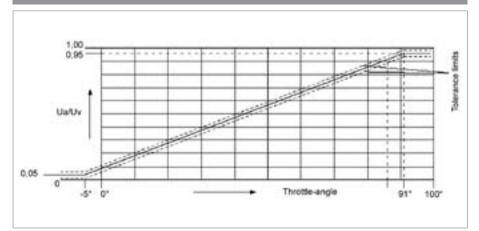
Sensors of this type are used in motor vehicles to record the angle of rotation of the throttle valve. They are exposed to extreme operating conditions, being attached directly to the throttle valve housing by means of an extended throttle valve shaft in the engine compartment. To maintain reliable operation under such conditions, the sensors are resistant to fuels, oils, saline fog and industrial atmospheres.

Throttle valve angle sensor Measurement of angles up to 86°


Part number

Technical data			
Useful electrical angle range	degree	es≤ 86	
Useful mechanical angle range	degrees≤ 96		
Angle between internal stops			
(must not be reached when fitted)	degree	es≥ 96	
Direction of rotation		Any	
Total resistance (term. 1-2)	kΩ	2 ± 20 %	
Wiper protective resistor			
(wiper in zero position, term. 2-3)	Ω	710 1380	
Operating voltage U_v	V	5	
Load		Ohmic res.	
Permissible wiper current	μΑ	≤ 10	
Voltage ratio from stop to stop - characteristic curve 1		0,05 = UA / UV = 0,95	
Slope of nominal characteristic curve	deg⁻¹	0,009375	
Operating temperature		- 40 °C+ 130 °C	
Approximate value for permissible			
vibration acceleration	m/s²	≤ 800	
Service life (rotary cycles)	Mill.	2	


0 280 122 024


Dimensional drawings

Characteristic curve

with micromechanical acceleration sensor

- Flexible and cost-effective sensor cluster with highly integrated electronics.
- Modular concept for different integration stages.
- Multiple use of sensor signals for future highly dynamic safety and convenience systems.
- Optimised monitoring and safety concept.

Design

The sensor cluster uses a new generation of micromechanical elements for the measurement and digital processing of angular velocity and acceleration. Based on PCB technology, they form a modular hardware and software concept with many new safety features providing a versatile and reliable solution for a wide variety of motor-vehicle applications.

Principle of operation

The new micromechanical element for yaw-rate measurement is a member of the established group of vibrating gyrometers operating on the Coriolis principle (CVG = Coriolis Vibrating Gyros). It consists of an inverse tuning fork with two mutually perpendicular linear vibration modes, drive circuit and evaluation circuit. A comb-like structure provides electrostatic drive and evaluation. The Coriolis acceleration is measured electrostatically by way of engaging electrodes. The measurement element is made up of two masses connected by way of a spring with the same resonance frequency for both vibration modes. This is typically 15 kHz and thus outside the normal vehicle interference spectrum, making it resistant to disturbance acceleration. The evaluation circuit ASIC and the micromechanical measurement element are located in a prefabricated housing with 20 connections (Premold 20). The design of the acceleration module is comparable to that of the yaw-sensor module and consists of a micromechanical measurement element, an electronic evaluation circuit and a housing with 12 connections (Premold 12).

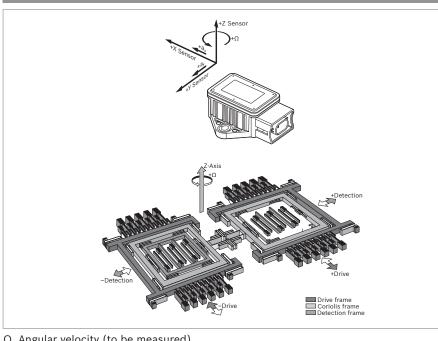
Operating principle 2

The spring-mass structure is moved in its sensitive axis by external acceleration and evaluated using a differential capacitor in the form of a comb structure.

Application

The introduction of the ESP system, the link with other chassis convenience systems and the development of advanced vehicle stabilization systems gave rise to the need for inertial signals to meet with exacting demands, particularly in terms of signal quality and stability, as well as additional measurement axes with a high degree of reliability. Bosch therefore developed a third generation, the versatile and inexpensive sensor cluster DRS MM3.x to meet the requirements of functions such as the hillstarting assistant, automatic parking brake, adaptive cruise and distance control, fourwheel drive, rollover intervention, electronic active steering and spring-damper control systems.

DRS-MM3.7k is the basic version of the MM3 generation for ESP applications. It comprises a yaw sensor and an integrated lateral acceleration module.

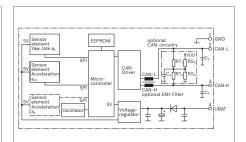

Explanation of characteristic quantities

- Ω Yaw rate
- g Acceleration due to gravity 9.8065 m/s²

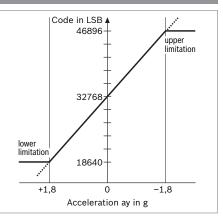
with micromechanical acceleration sensor

Technical data	
Yaw sensor/type	DRS-MM 3.7K
Maximum yaw rate Ω_{max} about axis of rotation (Z-axis)	± 100 °/s
Minimum resolution $\Delta\Omega_{max}$	± 0,1 °/s
Sensitivity	200 LSB/°/s
Sensitivity tolerance over service life 1)	≤ 5 %
Offset error over service life 1)	≤ 2 °/s
Non-linearity, max. deviation from optimum linear approximation	≤ 1 °/s
Start-up time	≤ 1 s
Electrical noise (measured with 100 Hz bandwidth)	≤ 0,2 °/s _{rms}
Linear acceleration sensor	
Maximum acceleration a _{qmax}	± 1,8 g
Sensitivity tolerance over service life 1)	≤ 5 %
Offset	≤ 0,03 g
Offset error over service life 1)	≤ 0,1 g
Electrical noise	
(measured with 100 Hz bandwidth)	\leq 0,01 $P_{\rm N}$
General information	
Operating-temperature range	-40 85 °C
Supply-voltage range	7 18 V
Current consumption at 12V	< 130 mA
¹) Service life: 6,000 h, over 15 years.	

Principle of operation


 $a_{\scriptscriptstyle y},\,a_{\scriptscriptstyle x}$ and Ω are the signals that the (illustrated) sensor supplies, where:

 Ω Angular velocity

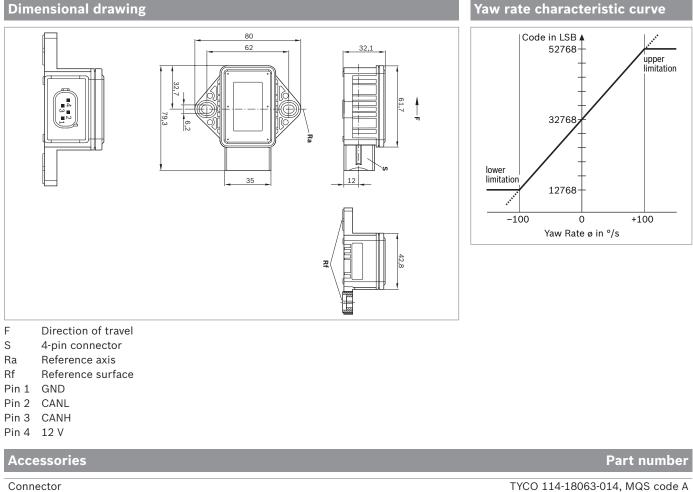

 a_y Acceleration in y direction = Lateral acceleration

 a_x Acceleration in x direction = Longitudinal acceleration

Block diagram

Acceleration characteristic curve

with micromechanical acceleration sensor


Part number

0 265 005 642

Technical data	
Yaw-rate offset	≤ 1,5 °/s
Linear acceleration sensor	
Sensitivity	800 LSB/m/s ²
Sensitivity	7845 LSB/g
Non-linearity, max. deviation	
from optimum linear approximation	≤ 4 % FSO
Start-up time	≤ 0,25 s
Dynamics	15 Hz
General information	
Storage-temperature range	-40 50 °C
Supply voltage	12 V nominal

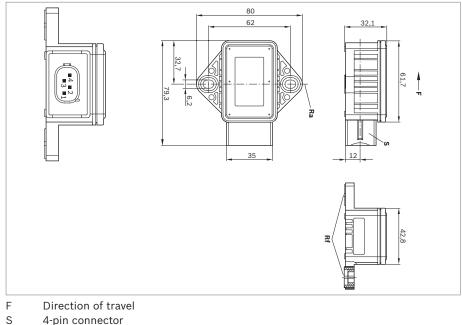
Dimensional drawing

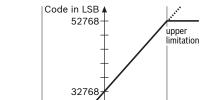
Pin

Catch

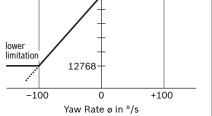
114-18063-001 TYCO C-208-15641

with micromechanical acceleration sensor


Part number


0 265 005 764

Technical data		
Yaw-rate offset	≤ 3,5 °/s	
Linear acceleration sensor		
Sensitivity	7849 LSB/g	
Start-up time	≤ 5 s	
Dynamics	15 Hz	
General information		
Storage-temperature range	-40 85 °C	
Supply voltage	14 V nominal	



Dimensional drawing

Yaw rate characteristic curve

- 4-pin connector
- Ra Reference axis
- Rf Reference surface
- Pin 1 GND
- Pin 2 CANL Pin 3 CANH
- Pin 4 12 V

Hall speed sensor without cable Digital measurement of rotational speeds

- Precise, reliable digital measurement of rotational speed, angles and distances.
- ► Non-contacting measurement.
- Hall IC in sensor with open collector output.
- Not susceptible to contamination.
- Resistant to mineral-oil products (fuel, engine oil).
- Transmission of information on sensor signal quality.

Design

Hall sensors consist of a semiconductor wafer with integrated driver circuits (e.g. Schmitt trigger) for signal conditioning, a transistor as output driver and a permanent magnet. These are hermetically sealed in a plastic connector housing. In an active rotational-speed sensor, magnets assume the function of the sensor-ring teeth. The magnets are integrated into a multiple rotor for example and are arranged with alternating polarity around its periphery. The measuring cell of the active rotationalspeed sensor is exposed to the constantly changing magnetic field of these magnets. There is thus a constant change in the magnetic flux through the measuring cell as the multiple rotor turns.

Application

Hall speed sensors are suitable for noncontacting and thus wear-free rotationalspeed measurement. Thanks to its compact design and low weight, the active rotational-speed sensor can be installed at or in a wheel bearing.

Installation instructions

- Standard installation conditions ensure full sensor operating capacity. - Route connecting leads in parallel to minimise interference. - Protect sensor against the destructive effect of static discharge (CMOS elements).

Principle of operation

The principal sensor components are either Hall elements or magneto-resistive elements. Both elements generate a voltage which is governed by the magnetic flux through the measuring element. The voltage is conditioned in the active speed range. In contrast to an inductive sensor, the voltage to be evaluated is not a function of the wheel speed. The wheel speed can thus be measured almost until the wheel has stopped.

A typical feature of an active speed sensor is the local amplifier. This is integrated into the sensor housing together with the measurement cell. A two-core cable provides the connection to the control unit. The speed information is transmitted in the form of a load-independent current. As with an inductive speed sensor, the frequency of the current is proportional to the wheel speed. This form of transmission using conditioned digital signals is not susceptible to inductive disturbance voltages as is the case with the type of transmission with inductive speed sensors.

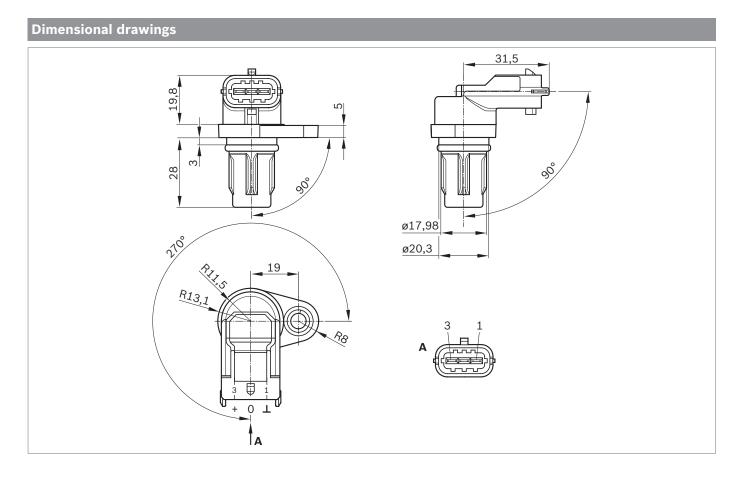
Explanation of characteristic quantities

<i>n</i> _{min.} =0	Static operation possible.
n _{min.} >0	Only dynamic operation
	possible.
U_{v}	Max. LOW output voltage with
I _A	Output current = 20 mA.
$I_{\rm v}$	Supply current for Hall sensor.
t _f	fall time (trailing signal edge).
t,	rise time (leading signal edge).

Hall speed sensor without cable

Digital measurement of rotational speeds

Part number

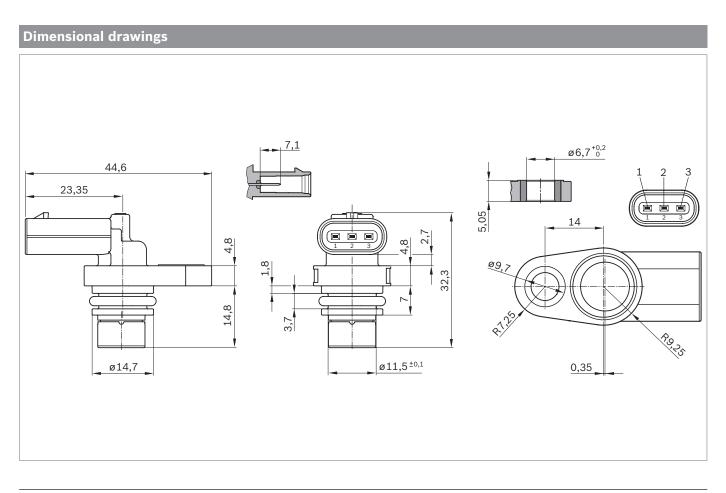

Technical data Minimum trigger-wheel speed 0 min. 1 n_{\min} 4500 min.⁻¹ Maximum trigger-wheel speed n_{max} Maximum working air gap 1,8 mm Minimum working air gap 0,2 mm Rated supply voltage $U_{\rm N}$ 5 V Supply voltage range $U_{\rm v}$ 4,5 ...16V Typically 5.6 Supply current I_{v} Output current I_{A} 0 ... 20 mA Output saturation voltage ≤ 0,5 V $U_{\rm s}$ Switching time $t_{f^{1}}$) ≤ 1 µs Switching time t_f²) ≤ 15 µs Steady-state temperature in sensor and transition zone -40°C...+150°C Steady-state temperature in connector zone -40°C...+130°C

0 232 103 097

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

Hall speed sensor without cable Digital measurement of rotational speeds

Part number


Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. 1
Maximum trigger-wheel speed	n _{max.}	4000 min1
Maximum working air gap		1,8 mm
Minimum working air gap		0,2 mm
Rated supply voltage	U _N	5 V
Supply voltage range	Uv	4,75V 18V
Supply current	I _v	Typically 5V
Output current	I _A	0 18 mA
Output voltage	U _A	0 <i>U</i> _v
Output saturation voltage	Us	≤ 0,52 V
Switching time	t, 1)	≤ 1 µs
Switching time	t _f ²)	≤ 17 µs
Steady-state temperature in sensor and transition zone	е	-40°C 150°C
Steady-state temperature in connector zone		-40°C 150°C

0 232 103 099

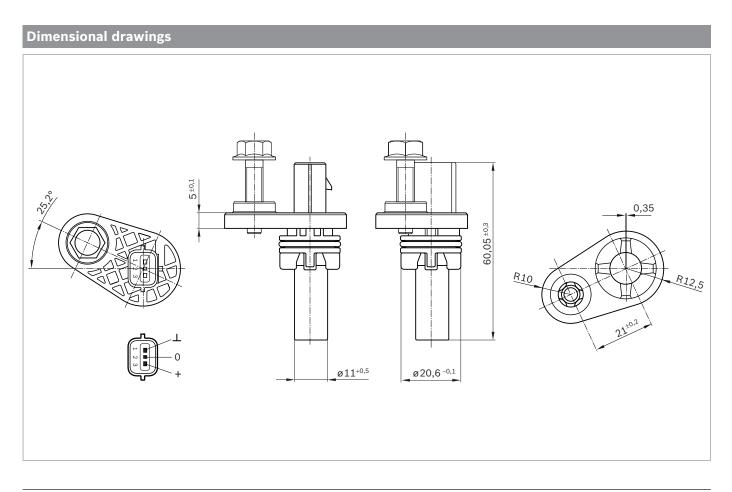
 μ A) At ambient temperature 23 ± 5 °C.

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

Hall speed sensor without cable

Digital measurement of rotational speeds

Part number


Technical data

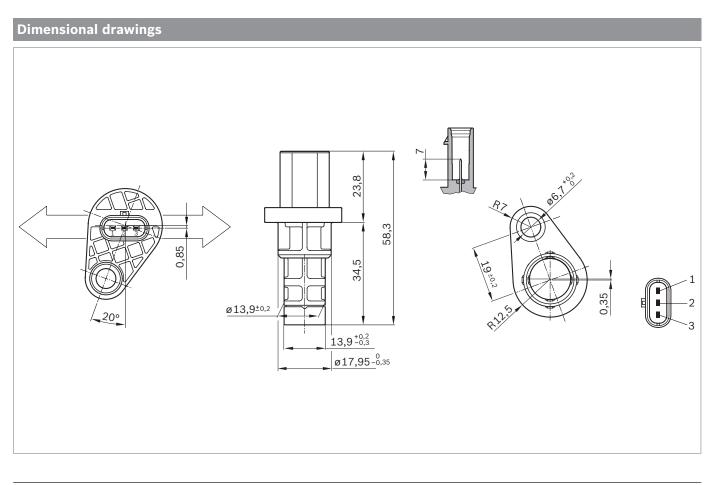
Minimum trigger-wheel speed	n _{min.}	0 min1
Maximum trigger-wheel speed	n _{max.}	8000 min. ⁻¹
Maximum working air gap		1,5 mm
Minimum working air gap		0,3 mm
Rated supply voltage	UN	5 V
Supply voltage range	Uv	4,518V
Supply current	I _v	Typically 6.7
Output current	I _A	0 20 mA
Output saturation voltage	Us	≤ 0,5 V
Switching time	<i>t</i> _f ¹)	≤ 1,3 µs
Switching time	t _f ²)	≤ 20 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+130°C

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

0 261 210 303

Hall speed sensor without cable Digital measurement of rotational speeds

Part number


Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min.1
Maximum trigger wheel speed, forwards	n _{max.}	8000 1/min
Maximum trigger wheel speed, reverse	n _{max.}	4000 1/min
Maximum working air gap		1,5 mm
Minimum working air gap		0,5 mm
Rated supply voltage	U _N	5 V
Supply voltage range	Uv	4,55,5 V
Supply current	$I_{\rm v}$	Typically 5.0 mA
Output current	I _A	0 20 mA
Output saturation voltage	Us	≤ 0,5 V
Switching time	<i>t</i> _f ¹)	≤ 1,3 µs
Switching time	t _f ²)	≤ 17 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+130°C

0 261 210 318

Figure

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

Hall speed sensor without cable

Digital measurement of rotational speeds

Part number

Technical data Minimum trigger-wheel speed 0 min. 1 n_{\min} 5000 min.⁻¹ Maximum trigger-wheel speed n_{max} Maximum working air gap 1,8 mm Minimum working air gap 0,2 mm Rated supply voltage $U_{\rm N}$ 5 V Supply voltage range $U_{\rm v}$ 4,5...18 V Typically 10 mA Supply current I_{v} Output current I_{A} 0 ... 20 mA Output saturation voltage ≤ 0,5 V $U_{\rm s}$ Switching time $t_{f^{1}}$) ≤ 1,3 µs Switching time ≤ 17 µs t_f²) Steady-state temperature in sensor and transition zone -40°C...+150°C Steady-state temperature in connector zone -40°C...+130°C ¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%. ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%. ³) -40...+150 °C permissible for brief period. ⁴) -40...+130 °C permissible for brief period.

0 261 210 329

Dimensional drawings 5,05 0,85 O-Ring ø17 20 ø6,7^{+0,1} ø9,7 9,5 с, 58,3 19 ± 0.15 80° 33,3 ∼î R12 0,35 **ø13,9**⁺⁰,з ø20,7-⁰,2

Hall speed sensor without cable Digital measurement of rotational speeds

Part number

n _{min.}	0 min. 1
n _{max.}	4500 min. ⁻¹
	1,8 mm
	0,2 mm
U _N	5 V
Uv	4,718 V
$I_{\rm v}$	Typically 5.6 mA
I _A	0 20 mA
Us	≤ 0,5 V
t _f 1)	≤ 1 µs
t _f ²)	≤ 15 µs
Steady-state temperature in sensor and transition zone	
	-40°C+130°C
	$ \begin{array}{c} $

0 281 002 667

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

Dimensional drawings ø6,7 31,5 R8 Ð Ø R_{I3} ດົ ഥ П o. R11,5 °° ഹ 2 ÷, ~°~~ F 3 ø17,98 U 0 ⊥ ø20,3

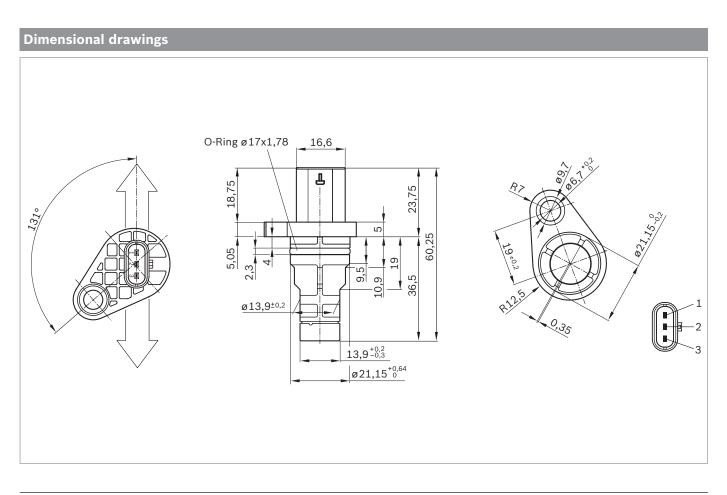
Hall speed sensor without cable

Digital measurement of rotational speeds

Part number

Technical data Minimum trigger-wheel speed 0 min. 1 n_{\min} Maximum trigger wheel speed, forwards 8000 1/min n_{max} Maximum trigger wheel speed, reverse 4000 1/min n_{max} Maximum working air gap 1,8 mm Minimum working air gap 0,2 mm Rated supply voltage UN 5 V 4,5...18 V Supply voltage range $U_{\rm v}$ Supply current $I_{\rm V}$ Typically 10 mA 0 ... 20 mA Output current $I_{\rm A}$ Output saturation voltage $U_{\rm s}$ ≤ 0,5 V Switching time t_f¹) ≤ 1,3 µs Switching time $t_{f^{2}}$) ≤ 17 µs

Figure



0 281 006 101

¹) Time from HIGH to LOW, measured between connections (0) and (-) from 90% to 10%.
 ²) Time from LOW to HIGH, measured between connections (0) and (-) from 10% to 90%.
 ³) -40...+150 °C permissible for brief period.
 ⁴) -40...+130 °C permissible for brief period.

Steady-state temperature in sensor and transition zone

Steady-state temperature in connector zone

-40°C...+150°C

-40°C...+130°C

Hall speed sensors Digital speed measurement

- Precise and reliable digital measurement of speeds, angles and distances.
- ► Non-contacting measurement.
- Hall IC in sensor with open collector output.
- Not susceptible to dirt.
- Resistant to mineral oil
- products (fuel, engine oil).
 Transmission of information on sensor signal quality.

 U_{v}

Design

Hall sensors consist of a semi-conductor chip with integrated driver circuits (e.g. Schmitt trigger) for signal conditioning and a transistor as output driver as well as a permanent magnet. These are hermetically sealed into a plastic connector housing.?With an active speed sensor, magnets assume the function of the sensor ring teeth. The magnets are integrated for example into a multi-pole ring and are arranged with alternating polarity around its circumference.?The measurement cell of the active speed sensor is exposed to the constantly changing magnetic field of these magnets. There is thus a constant change in the magnetic flux through the measurement cell as the multi-pole ring rotates.

Application

Hall speed sensors are suitable for noncontacting and thus wear-free speed measurement.?Thanks to its compact size and low weight, the active speed sensor can be installed at or in a vehicle wheel bearing.

Installation instructions

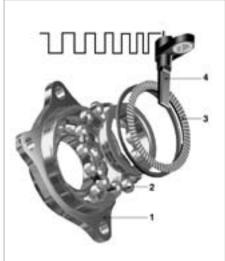
- Standard installation conditions guarantee full sensor functioning.?- Route the connecting cables in parallel to minimise interference.?- Protect the sensor against the destructive action of static discharge (CMOS components).

Principle of operation

The principal sensor components are either Hall elements or magnetoresistive elements. Both elements generate a voltage which is governed by the magnetic flux through the measuring element. The voltage is conditioned in the active speed range. In contrast to an inductive sensor, the voltage to be evaluated is not a function of wheel speed. The wheel speed can thus be measured almost down to zero.?A typical feature of the active speed sensor is the local amplifier. This is integrated into the sensor housing together with the measurement cell. A two-core cable forms the connection to the control unit. The speed information is transmitted in the form of a load-independent current. As with an inductive speed sensor, the frequency of the current is proportional to the wheel speed. This form of transmission employing conditioned digital signals is not susceptible to inductive disturbance voltages as is the case with the type of transmission with inductive speed sensors.

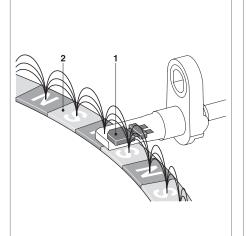
Explanation of characteristic quantities

- $n_{\min}=0$ Static operation possible.
- $n_{\min} > 0$ Dynamic operation only.
 - Max. output voltage at LOW with
- I_A output current = 20 mA.
- I_v Supply current for Hall sensor.
- $t_{\rm f}$ Fall time (trailing signal edge).
- t_r Rise time (leading signal edge).

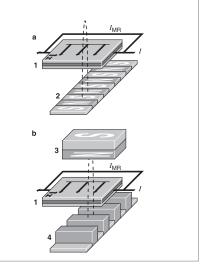

Hall speed sensors Digital speed measurement

Technical data

The signal strength is governed by the working air gap and the properties of the steel and multiple rotor.


Rated supply voltage U_{N}	12 V
Supply-voltage range U_v	4,5 12 V
Output current I _A	5,9 16,8 mA
Sustained temperature in sensor and transition zone ¹)	-40+ 150 °C
Sustained temperature in connector zone	-40+ 115 °C
Signal frequency	1 2500 Hz

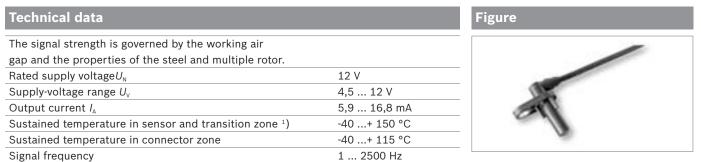
Exploded view



Sectional view through active rotational-speed sensor

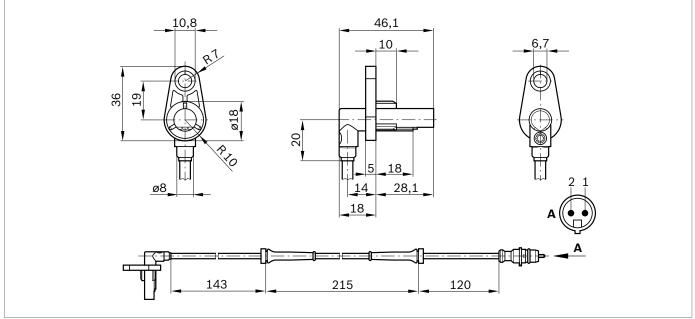
Diagrammatic figure for rotational-speed sensing

- 1 Wheel hub
- 2 Ball bearing
- 3 Multiple rotor
- 4 Wheel-speed sensor
- 1 Sensor element
- 2 Multiple rotor with alternating North and South magnetisation



- $U_{\rm Hall}$ Generated Hall voltage (in Volt)
- *I*_{Const} Constant current (in amps)B Magnetic flux density (in Tesla)
 - Magnetic flux density (in Tesla) North pole
- N North pole S South pole

Hall speed sensors Digital speed measurement


Part number

0 265 007 527

1) Short-term -40...+170°C permissible.

Dimensional drawing

Supply voltage (white wire) Pin 1

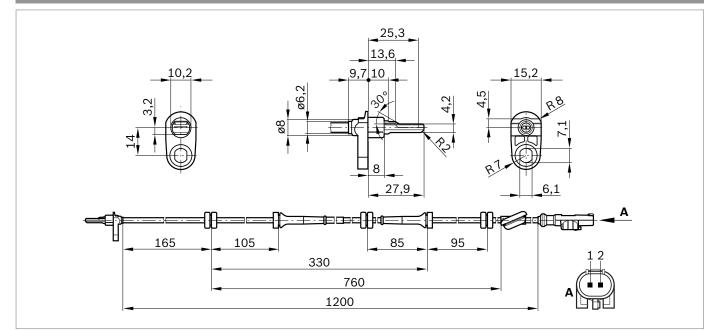
Pin 2 Signal (black wire)

Accessories		Part number
Connector housing	2-pin	2 264 420 424
Contact pins	For Ø 0,52,5 mm ² ; Content: 100 x	2 263 124 303
O-ring		2 260 210 308

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. Customer must provide mating connector/contacts. If a different connector is used, the cable must be sealed against the incidence of moisture.

0 265 007 544

ure


Hall speed sensors Digital speed measurement

Part number

Technical data		
The signal strength is governed by the working air		
gap and the properties of the steel and multiple rotor.		
Rated supply voltage U_{N}	12 V	
Supply-voltage range U_v	4,5 12 V	
Output current I _A	5,9 16,8 mA	
Sustained temperature in sensor and transition zone ¹)	-40+ 150 °C	
Sustained temperature in connector zone	-40+ 115 °C	
Signal frequency	1 2500 Hz	[

¹) -40...+170°C permissible for brief periods.

Dimensional drawing

Pin 1 Supply voltage (white wire)

Pin 2 Signal (black wire)

Accessories Part nu		Part number
Connector housing	2-pin	Tyco number 1-967 644-11)
Contact pins	For Ø 0.52.5 mm ²	Tyco number 962 885-11)
Single-wire seal	For Ø 0.51.0 mm ²	Tyco number 967 067-21)
Single-wire seal	For Ø 1.52.5 mm ²	Tyco number 967 067-11)

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. Customer must provide mating connector/contacts. If a different connector is used, the cable must be sealed against the incidence of moisture.

¹) Available from Tyco Electronics.

Measurement of structure-borne sound and acceleration

- Reliable detection of structureborne sound to protect machines and motors.
- Piezoceramic element with high measurement sensitivity.
- Sturdy compact design.

Design and operation

On account of its inertia, a mass exerts compressive forces on an annular piezoceramic element in the same rhythm as the vibrations causing them. As a result of these forces, charge transfer occurs within the ceramic element and a voltage is generated between the upper and lower sides of the ceramic element. The voltage is tapped via contact washers - often filtered and integrated - and is available for use as a measurement signal. Vibration sensors are bolted to the object to be measured so as to relay the vibrations at the measurement location directly to the sensors.

Areas of application

- Knock control for internal-combustion engines
- Machine-tool protection
- Cavitation detection
- Monitoring of pivot bearings
- Anti-theft systems

Note

1 connector housing, contact pins and individual seals are required for a connector. Use must be made of genuine Tyco crimping tools for motor vehicle applications.

Explanation of characteristic quantities

- E Sensitivity
- f Frequency
- g Acceleration due to gravity

Measurement sensitivity

Each vibration sensor has individual transmission characteristics closely related to the measuring sensitivity. The sensitivity is defined as the output voltage per unit of acceleration due to gravity (refer to characteristic curve). The production-related sensitivity scatter is acceptable for applications in which the main emphasis is on recording the occurrence of vibrations rather than on their amplitude.

The low voltages supplied by the sensor can be evaluated using a high-impedance AC voltage amplifier.

Installation instructions

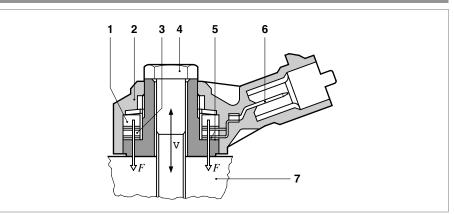
The sensors must rest directly on their metal surfaces. Use must not be made of packing plates, spring or toothed lock washers for support. The contact surface of the mounting hole must be of high quality to ensure low-resonance coupling of the sensors to the measurement location. The sensor cable is to be laid such that no resonance vibration can occur. The sensor must not be allowed to have contact with liquids for lengthy periods.

Application

Vibration sensors of this type are suitable for detecting structure-borne vibration occurring for example in motor-vehicle engines due to irregular combustion and in machines. Thanks to their robust design, these vibration sensors can withstand even the most severe operating conditions.

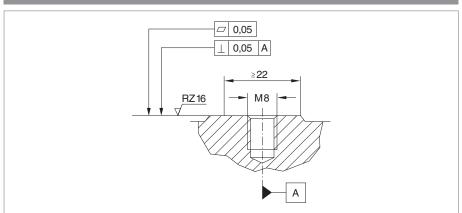
Evaluation

The signals from these sensors can be evaluated with an electronic module.


Pin assignment

Pin 1, 2Measurement signalPin 3Screen, dummy; if provided

Measurement of structure-borne sound and acceleration

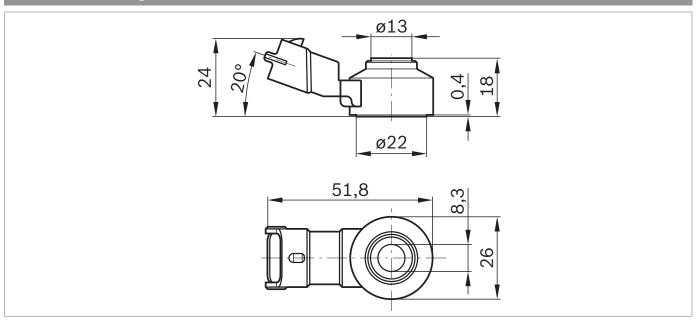

30 ± 6 mV/g
10 %
> 30 kHz
950 1350 pF
≤ 0,04 mV/g · K
≤ 400 g
M 8 x 25 ; Quality 8.8
M 8 x 30 ; Quality 8.8
20 ± 5 Nm
Any

Vibration sensor (design)

- 1 Seismic element with compressive forces F
- 2 Housing
- 3 Piezoceramic element
- 4 Screw
- 5 Contact
- 6 Electrical connection
- 7 Machine block, V Vibration.

Mounting hole

Measurement of structure-borne sound and acceleration


Part number

Technical data	
Vibration sensors	2-pole, without cable
Frequency range	3 22 kHz
Self-impedance	> 1 MΩ
Operating temperature range	- 40+ 150 °C
Permissible sustained vibration	≤ 80 g

igure	
	est?

0 261 231 173

Dimensional drawing

Accessories

Part number

Connector housing	2-pin	1 928 403 874
6	r	1 928 498 056
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Individual seal	for Ø 0.51.0 mm ² ; content: 10 x	1 928 300 599
Individual seal	for Ø 1.52.5 mm ² ; content: 10 x	1 928 300 600
Dummy plug	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Measurement of structure-borne sound and acceleration

Part number

Technical data			
Vibration sensors	2-pole, without cable		
Frequency range	3 22 kHz		
Self-impedance	> 30 MΩ		
Operating temperature range	- 40+ 130 °C		
Permissible sustained vibration	≤ 50 g		

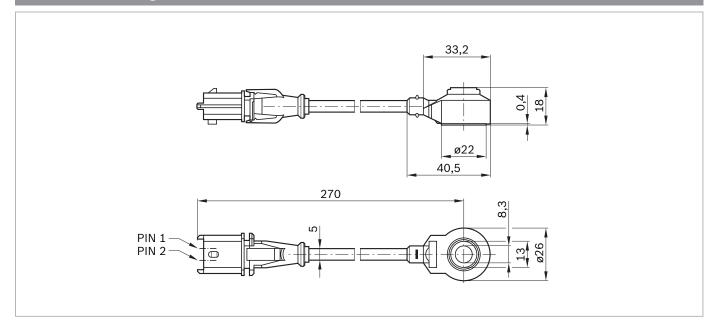
Dimensional drawing

Accessories

Part number

Connector housing	2-pin	1 928 403 874
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Individual seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 987 300 599
Individual seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 987 300 600
Dummy plug	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Measurement of structure-borne sound and acceleration

Part number

Technical data		
Vibration sensors	2-pole, with cable, up to 130 °C	
Frequency range	0 24 kHz	
Self-impedance	> 1 MΩ	
Operating temperature range	- 40+ 130 °C	
Permissible sustained vibration	≤ 80 g	

igure	
	/
	100
	-

Dimensional drawing

Accessories

Part number

Connector housing	2-pin	1 928 403 874
	2-piii	1 920 403 074
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 054
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 055
Individual seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 987 300 599
Individual seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 987 300 600
Dummy plug	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

0 261 231 196

Notes

Signal evaluation for vibration sensors Signal-evaluation module

Technical data

- ► Programmable amplification.
- ▶ Programmable band pass filter.
- ► No external calibration required.
- Choice of 4 selectable sensor inputs or 2 symmetrical inputs.
- Integrated programmable frequency divider.
- ► Analog stage with signal test.
- Suitable for a wide range of micro controller types.
- ▶ PLCC28 housing.

Note

On account of the MOS inputs, the electronic module is to be handled with extreme care:

- No direct contact
- Use MOS workstation
- Only switch on the operating voltage with a rise of < 1 V \cdot $\mu s^{\cdot 1}$

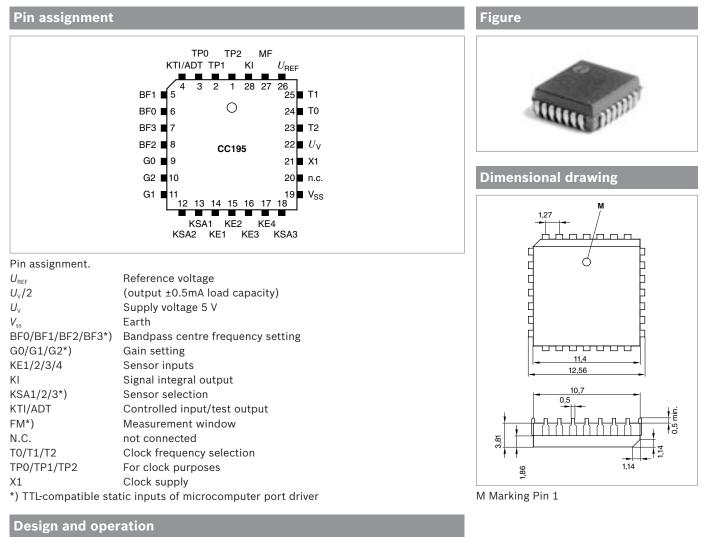
Design and operation

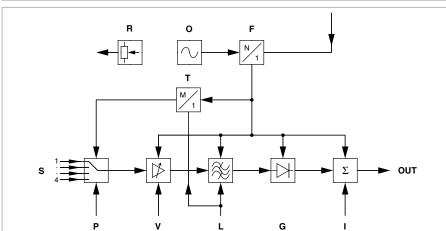
A circuit integrated into the module evaluates the analog signals. The circuit contains a programmable amplifier, a band pass filter, a rectifier, an integrator and control logic. The use of "SC" circuitry ensures reliable operation without the need for external calibration. The fully programmable circuit can be readily employed for a variety of applications. The start and end of integration are controlled by the "Measurement window" input. A frequency divider programmed by way of three inputs generates the system clock of the analog stage for various externally applied clock frequencies (8 stages from 1...16 MHz) and the test frequencies (9 centre frequencies of 5...16 kHz) depending on the setting of the filter. By altering the frequency, the internal clock frequency can be set from a nominal level of 100 kHz to values between 50 kHz and 150 kHz. The band-filter centre frequencies, the test frequencies and the integration time constant are shifted in parallel with this.

Application

Evaluation of analog signals with piezoelectric acoustic pick-ups (vibration sensors)

Parameter Conditions min max Supply voltage $U_{\rm v}$ V 4,75 5,25 Supply current I_{v} mΑ $U_v/2$ 30 Input voltage, analog 0 $U_{\rm KF}$ V 2 Input current, analog μA 10 $U_{\rm KE}$ = 2 V I_{KE} 2 Signal amplification V 128 -Signal amplification, tolerance d, % -3 +3 -Clock frequency f. MHz -0.5 27 kHz Input signal frequency $f_{\rm KE}$ 30 5 Band-pass filter center frequency $f_{\rm M}$ kHz 16 Filter quality Q 3 Filter quality, tolerance -0.5 +0.3 d_a Integrator deviation, useful $d_{\rm VKU}$ V 3.8 4,5 Integrator offset $t_{\rm MF}$ > 0 °C -300 +300 mV Integrator offset mV $t_{\rm MF}$ < 0 °C -400 +400 Integration time constant t, 148 152 μs 2 Integrator output impedance Zκι kΩ Operating temperature °С -40 +125 Ռ Limit values Parameter min max type V Max. supply voltage -0,5 6,7 Rate of rise of max. supply voltage μV 1 Max. current in all inputs and outputs -2,5 mΑ


+2,5 Protection of inputs and outputs against destruction by electrostatic discharge kV -2 +2 Storage temperature °C -55 +135 Ambient temperature °C during operation -40 +125


Signal evaluation for vibration sensors

Signal-evaluation module

Part number

0 272 230 424

- Frequency divider
- G Rectifier

F

L

Т

Т

V

- Filter
- Integrator
- O Oscillator P Multiplexer
- R Reference signals
- S Sensor inputs
 - Test pulse divider
 - Amplifier
- OUT Output.

2013 | 2014

Micromechanics, hybrid design

- ► High level of accuracy
- EMC protection better than 100 Vm⁻¹
- With temperature compensation

Recommendation for signal evaluation

The design of the electrical output of the pressure sensor is such that appropriate circuitry in the downstream electronics can detect malfunctions caused by breaks in the cable or short circuits. The diagnosis ranges beyond the characteristic curve limits are intended for fault diagnosis. Example circuit for detection of all fault situations using signals beyond the characteristic curve limits.

Application

This sensor is used to measure the difference between the intake-manifold pressure of the intake air flow of internal-combustion engines and a reference pressure applied by way of a hose.

Design and operation

The piezoresistive pressure-sensor element and appropriate signal amplification and temperature-compensation electronics are integrated on a silicon chip. The pressure measured acts on the back of the silicon diaphragm. The reference pressure acts from above on the active side of the silicon diaphragm. Thanks to the coating process employed, both sides are resistant to the gases and liquids occurring in the intake manifold.

Installation instructions

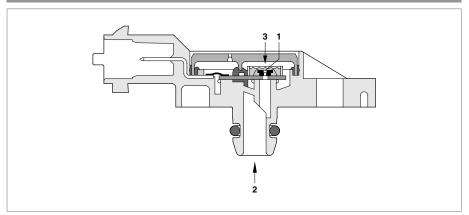
The sensor is designed for attachment to a flat surface at the intake manifold of motor vehicles. The pressure connection projects into the intake manifold and is sealed off from the atmosphere by an O-ring. The sensor should be installed such that condensate cannot accumulate in the pressure cell or the reference opening (pressure sampling point at top of intake manifold, pressure connection angled downwards etc.). As a general rule, the installation position should ensure that liquids cannot accumulate in the sensor and pressure hose. If it freezes, water in the sensor will lead to malfunctioning.

16

Differential pressure sensor Micromechanics, hybrid design

Technical data

Parameter			min	type	max
Supply voltage	Uv	V	4,75	5	5,25
Current input at U_v = 5 V	I _V	mA	6,0	9,0	12,5
Load current at output	/	mA	-1,0		0,5
Load resistance to U_v or ground	33	kΩ	10		
Response time	τ _{10/90}	ms			1
Voltage limitation at U_v = 5 V - lower limit	U _{Amin}	V	0,25	0,3	0,35
Voltage limitation at $U_{\rm v}$ = 5 V - upper limit	U _{Amax}	V	4,75	4,8	4,85


 $U_{\rm v}$

V

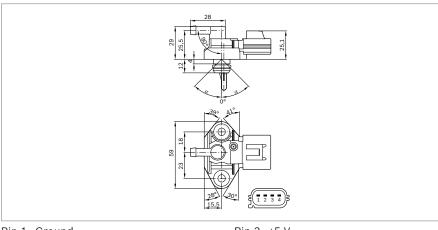
Limit data

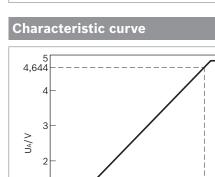
Supply voltage

Sectional view of pressure sensor (entire system)

1 Sensor cell

2 Measurement pressure


3 Reference pressure


Micromechanics, hybrid design

Part number

Technical data				
Parameter			min	max
Pressure measuring range $(U_{AA}p_2)$	p_{e}	kPa	0	500
Operating temperature	ϑ _B	°C	-40	+125
Load resistance to U_v or ground	$R_{pull-up}$	kΩ	4,7	
Limit data				
Pressure	p _e	kPa	+3000	
Storage temperature	VL	°C	+130	

Dimensional drawing



p_e/kPa

Figure

Pin 1 Ground Pin 2 NTC

Pin 3 +5 V Pin 4 Output signal

R Reference

1 0.5 0

p₁

- Dr Pressure sensor
- E Electronic control unit

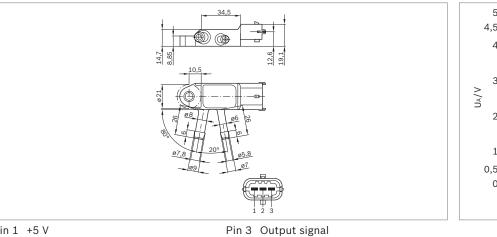
Accessories

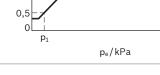
Connector housing	4-pin	Yazaki number	7283-5886-30 ¹)
Contact pins	For Ø 0.350.5 mm ²	Yazaki number	7116-4102-081)
Contact pins	For Ø 0.751.0 mm ²	Yazaki number	7116-4103-081)
Single-wire seal	For Ø 0.350.5 mm ²	Yazaki number	7158-3030-50 ¹)
Single-wire seal	For Ø 0.751.0 mm ²	Yazaki number	7158-3031-901)
Dummy plug		Yazaki number	7158-3032-601)

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. 1) Available from Yazaki Europe LTD.

Part number

 p_2

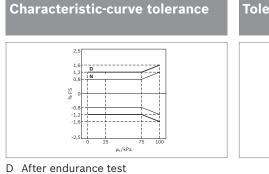

0 261 230 093


Micromechanics, hybrid design

Part number

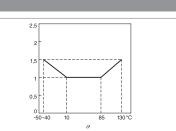
Technical data				
Parameter			min	max
Pressure measuring range $(U_{AA}p_2)$	p_{e}	kPa	0	100
Operating temperature	ϑ _B	°C	-40	+130
Load resistance to U_v or ground	$R_{pull-up}$	kΩ	5	
Limit data				
Pressure	p_{e}	kPa	-350	+350
Storage temperature	VL	°C	-40	+130

Dimensional drawing

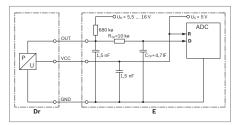


 p_2

Characteristic curve


5

Pin 1 +5 V Pin 2 Ground



N As-new condition

Tolerance extension factor

Recommendation for signal evaluation

D Pressure signal

- R Reference
- Dr Pressure sensor
- E Electronic control unit

Accessories

Accessories		Part number
Connector housing	3-pin	1 928 403 966
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 0.52.5 mm ² ; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

0 281 002 772

Illustration

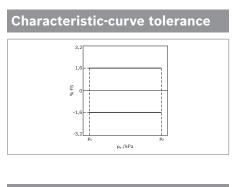
Micromechanics, TO cell

- Resistant to measurement medium.
- Piezoresistive sensor element.
- ► Integral moisture protection.

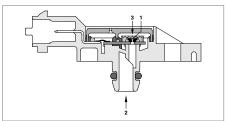
Application

Pressure sensors of this type are used in motor vehicles to measure the pressure in the fuel tank. The measurement principle involves determining the difference in pressure with respect to ambient pressure.

Design and operation

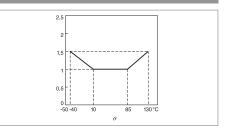

The main component of the differentialpressure sensor is a micromechanical sensor element with diaphragm and pressure connection. The diaphragm is resistant to the measurement medium. For measurement purposes, the measurement medium is routed through the pressure connection onto the diaphragm, which transmits the pressure applied to the piezoresistive sensor element. This is integrated together with appropriate signal amplification and temperature-compensation electronics on a silicon chip. The silicon chip is provided with a TO-type enclosure which forms the inner sensor cell. The active surface is exposed to the ambient pressure by way of an opening in the cap and a reference connection and is protected against moisture by a silicone gel. The pressure sensor supplies an analog output signal which has a ratiometric relationship with the supply voltage.

Explanation of characteristic quantities

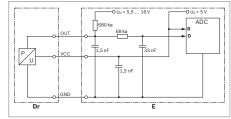

- p_e Differential pressure
- U_{A} Output voltage (signal voltage)
- $U_{\rm v}$ Supply voltage
- *k* Tolerance multiplier
- D After endurance test
- N As-new condition

Installation instructions

The sensor is designed for horizontal attachment to a horizontal surface. Suitability for other installation angles is to be checked on a case-to-case basis. As a general rule, the installation position should ensure that liquids cannot accumulate in the sensor and pressure hose. If it freezes, water in the sensor will lead to malfunctioning.



Sectional view of pressure sensor (entire system)



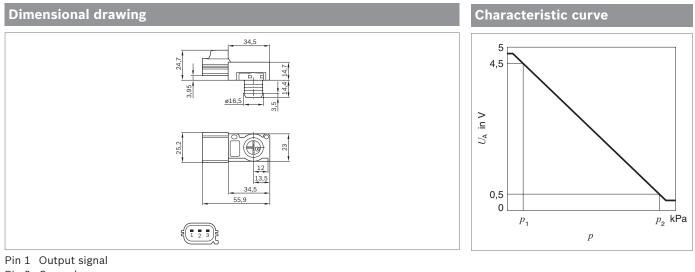
- 1 Sensor cell
- 2 Measurement pressure
- 3 Reference pressure

Tolerance extension factor

Recommendation for signal evaluation

- D Pressure signal
- R Reference
- Dr Pressure sensor
- E Electronic control unit

Differential pressure sensor Micromechanics, TO cell


Part number

Technical data					
Parameter			min	type	max
Pressure measuring range $(U_{AA}p_2)$	p_{e}	kPa	-100		0
Operating temperature	$\vartheta_{\scriptscriptstyle B}$	°C	-40		+130
Supply voltage	U_{v}	V	4,75	5	5,25
Current input at U_v = 5 V	I_{v}	mA	6,0	9,0	12,5
Load current at output	IL	mA	-1,0		0,5
Load resistance to U_v or ground	$R_{ m pull-up}$	kΩ	5		
Load resistance to U_v or ground	$R_{ m pull-down}$	kΩ	10		
Response time	$ au_{ m 10/90}$	ms			1
Voltage limitation at U_v = 5 V - lower limit	$U_{\rm Amin}$	V	0,25	0,3	0,35
Voltage limitation at U_v = 5 V - upper limit	$U_{\rm Amax}$	V	4,75	4,8	4,85
Limit data					
Supply voltage	Uv	V			16
Pressure	p_{e}	kPa	-500		+500
Storage temperature	VL	°C	-40		+130

0 261 230 121

Figure

Pin 2 Ground

Pin 3 +5 V

Accessories			Part number
Connector housing	3-pin	Yazaki number	7283-5880-10 ¹)
Contact pins	For Ø 0.350.5 mm ²	Yazaki number	7116-4102-021)
Contact pins	For Ø 0.751.0 mm ²	Yazaki number	7116-4103-021)
Single-wire seal	For Ø 0.350.5 mm ²	Yazaki number	7158-3030-50 ¹)
Single-wire seal	For Ø 0.751.0 mm ²	Yazaki number	7158-3031-901)
Dummy plug		Yazaki number	7158-3032-60 ¹)

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. 1) Available from Yazaki Europe LTD.

Micromechanics, hybrid design

- ► High level of accuracy
- EMC protection better than 100 V m⁻¹.
- With temperature compensation.
- Version with additional integrated temperature sensor.

Tolerances

The piezo-resistive pressure-sensor element and appropriate signal amplification and temperature compensation electronics are integrated on a silicon chip. The measured pressure acts from above on the active side of the silicon diaphragm. A reference vacuum is enclosed between the rear side and a glass base. The temperature-sensor element is an NTC thermistor. Thanks to an appropriate coating method, the pressure and temperature sensor are resistant to the gases and liquids occurring in the intake manifold.

Design and operation

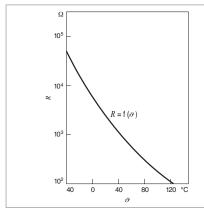
The piezo-resistive pressure-sensor element and appropriate signal amplification and temperature compensation electronics are integrated on a silicon chip. The measured pressure acts from above on the active side of the silicon diaphragm. A reference vacuum is enclosed between the rear side and a glass base. The temperature-sensor element is an NTC thermistor. Thanks to an appropriate coating method, the pressure and temperature sensor are resistant to the gases and liquids occurring in the intake manifold.

Application

This sensor is used to measure the absolute intake-manifold pressure. The version with integrated temperature sensor additionally measures the temperature of the intake-air flow.

Installation instructions

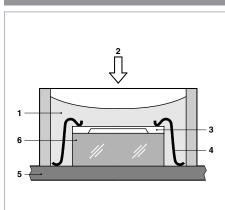
The sensor is designed for attachment to a flat surface at the intake manifold of motor vehicles. The pressure connection and the temperature sensor jointly project into the intake manifold and are sealed off from the atmosphere by an O-ring. The sensor should be installed in the vehicle such that condensate cannot accumulate in the pressure cell (pressure sampling point at top of intake manifold, pressure connection angled downwards etc.).


Explanation of characteristic quantities

- U_A Output voltage
- $U_{\rm v}$ Supply voltage
- k Tolerance multiplier
- D After endurance testing
- N As new

Absolute-pressure sensors Micromechanics, hybrid design

Technical data Parameter			min	type	max
Current input at $U_{\rm v}$ = 5 V		mA	6	9	12,5
Load current at output	I _L	mA	-1		0,5
Voltage limitation at U_v = 5 V - lower limit	$U_{\rm Amin}$	V	0,25	0,3	0,35
Voltage limitation at U_v = 5 V - upper limit	U _{Amax}	V	4,75	4,8	4,85
Limit data					
Supply voltage	U _{v max}	V			16

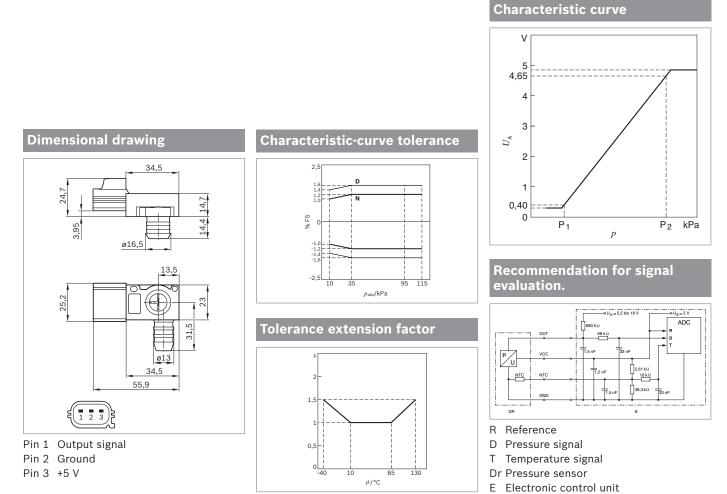

Applies to products with integrated temperature sensor.

Section through pressure sensor

- 1 Bond
- 2 Cover
- 3 Sensor chip
- 4 Ceramic substrate
- 5 Housing with pressure-sensor connection
- 6 Seal
- 7 NTC element.

Section through sensor cell

- 1 Protective gel
- 2 Pressure
- 3 Sensor chip
- 4 Bond
- 5 Ceramic substrate
- 6 Glass base.


Micromechanics, hybrid design

Part number

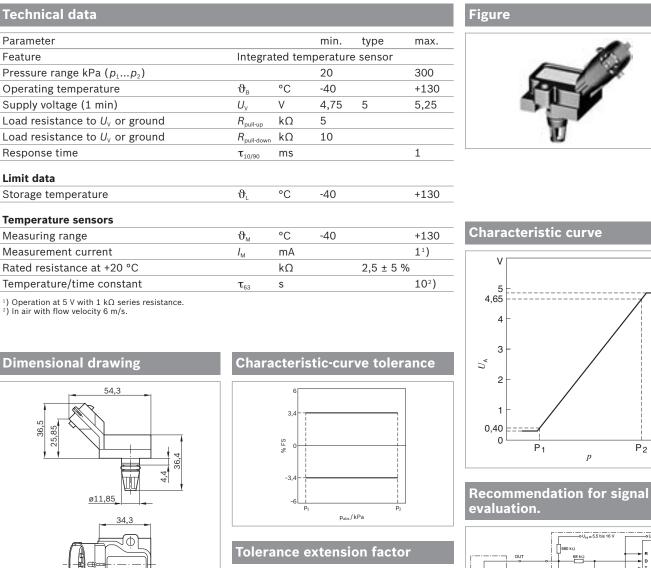
Technical data					
Parameter			min.	type	max.
Pressure range kPa (p_1p_2)			10		115
Operating temperature	ϑ _B	°C	-40		+130
Supply voltage (1 min)	Uv	V	4,75	5	5,25
Load resistance to U_v or ground	$R_{pull-up}$	kΩ	5	680	
Load resistance to U_v or ground	$R_{ m pull \cdot down}$	kΩ	10	100	
Response time	$ au_{10/90}$	ms			1
Limit data					
Storage temperature	ϑ_{L}	°C	-40		+130

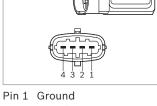
0 261 230 083

Part number

Connector housing	Quantity required: 1 x	1 928 403 966
Contact pins	Quantity required: 3 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 3 x; Contents: 10 x	1 928 300 599

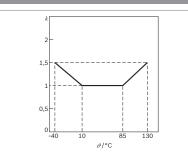
Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Accessories


0 261 230 105

Absolute-pressure sensors

Micromechanics, hybrid design


Part number

Pin 2 NTC thermistor Pin 3 +5 V Pin 4 Output signal

<u>Accessories</u>

Part number

P₂ kPa

ADC

2,61 ks

10 kΩ Пзв.зкΩ

vco

NTO NTC

Pressure signal

Temperature signal Dr Pressure sensor

Electronic control unit

Reference

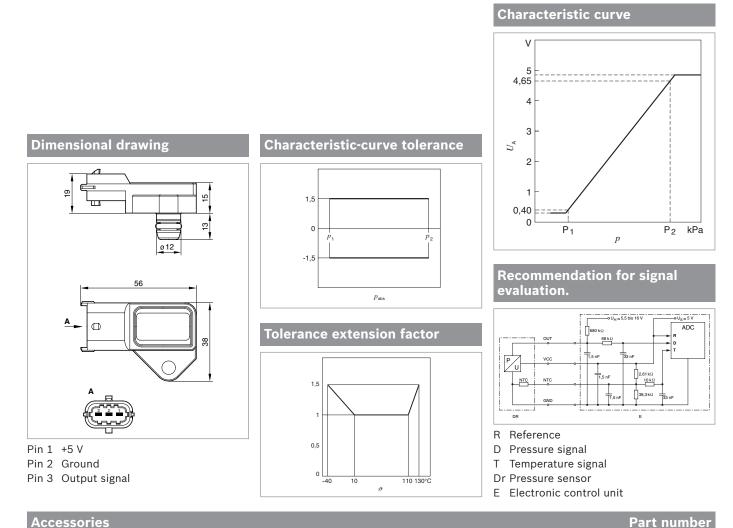
DE

R D

Т

Е

Connector housing	Quantity required: 1 x	1 928 403 736
Contact pins	Quantity required: 4 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 4 x; Contents: 10 x	1 928 300 599


Micromechanics, hybrid design

Part number

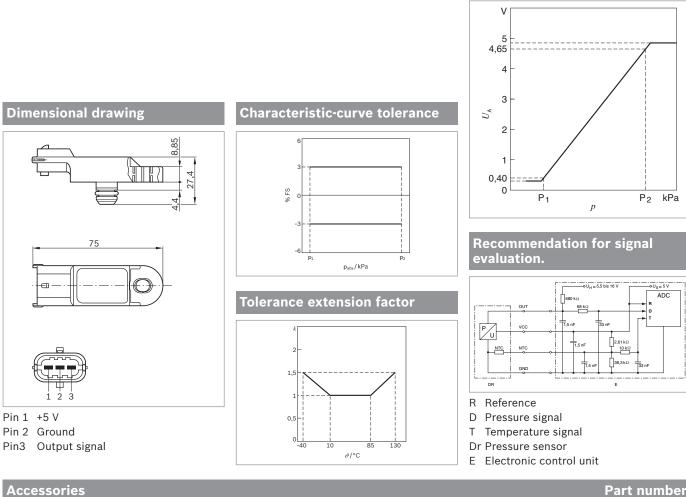
Technical data Parameter min. type max. Pressure range kPa ($p_1...p_2$) 20 250 Operating temperature ϑ_B °C -40 +130 V Supply voltage (1 min) $U_{\rm v}$ 4,5 5 5,5 Load resistance to $U_{\rm v}$ or ground $R_{\text{pull-up}}$ kΩ 5 680 Load resistance to U_v or ground kΩ 10 100 R_{pull-dowr} Response time ms 1 $\tau_{10/90}$ Limit data ϑ_1 °C Storage temperature -40 +130

0 281 002 487

Accessories

Connector housing	Quantity required: 1 x	1 928 403 966
Contact pins	Quantity required: 3 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 3 x; Contents: 10 x	1 928 300 599

Micromechanics, hybrid design


Part number

Technical data					
Parameter			min.	type	max.
Pressure range kPa (p_1p_2)			20		300
Operating temperature	ϑ _B	°C	-40		+130
Supply voltage (1 min)	Uv	V	4,75	5	5,25
Load resistance to U_v or ground	$R_{pull-up}$	kΩ	5		
Load resistance to U_v or ground	$R_{ m pull-down}$	kΩ	10		
Response time	$ au_{ m 10/90}$	ms			1
Limit data					
Storage temperature	ϑ_{L}	°C	-40		+130

0 281 002 566

Characteristic curve

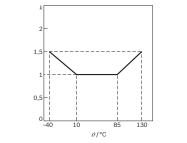
 F-1	26 M	161	m	61	
 (. II					- T

Connector housing	Quantity required: 1 x	1 928 403 966
Contact pins	Quantity required: 3 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 3 x; Contents: 10 x	1 928 300 599

Micromechanics, hybrid design

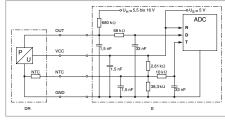
Part number

Technical data Figure Parameter min. type max. Feature Integrated temperature sensor Pressure range kPa ($p_1...p_2$) 250 20 °C ϑ_B Operating temperature -40 +130 Supply voltage (1 min) U_v V 4,75 5 5,25 Load resistance to $U_{\rm v}$ or ground $R_{\underline{pull-up}}$ kΩ 680 5 Load resistance to U_v or ground kΩ 10 100 $R_{pull-down}$ Response time $\tau_{_{10/90}}$ 1 ms Limit data Storage temperature ϑ_1 °C -40 **Temperature sensors** Characteristic curve ϑ" °C -40 +130 Measuring range Measurement current 11) $I_{\rm M}$ mΑ V Rated resistance at +20 °C kΩ 2,5 ± 5 % Temperature/time constant s 10^{2}) au_{63} 4,65 ¹) Operation at 5 V with 1 kΩ series resistance. ²) In air with flow velocity 6 m/s. 4 3 **Dimensional drawing Characteristic-curve tolerance** $\mathbf{U}_{\mathbf{A}}$ 2 1 2.5 0.40 27. 0 % FS 4,4 P₁ P₂ р Π -2,5 ø11,85 Recommendation for signal 54,75 evaluation. p_{abs}/kPa Uu = 5,5 bis 16 1 ADC **Tolerance extension factor** 2,61 ks NTC 10 kΩ ______ 38,3 kΩ 1.5


Pin assignment

Pin 1 Ground

Pin 2 NTC signal


Pin 3 +5 V

Pin 4 Output signal

0 281 002 573

R Reference

D Pressure signal

Temperature signal Т

- Dr Pressure sensor
- Е Electronic control unit

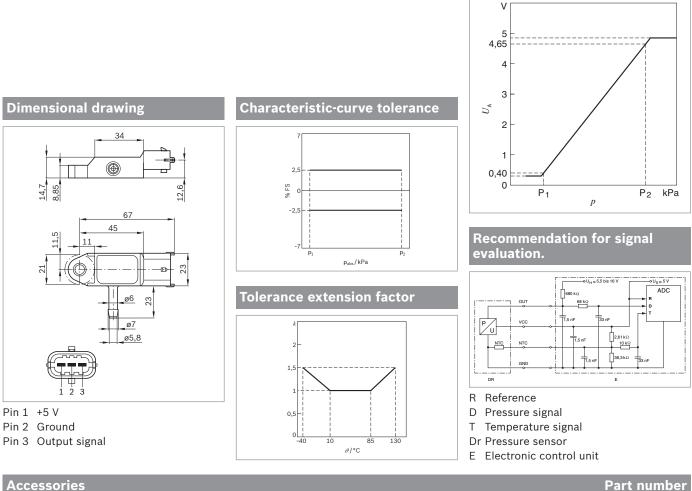
<u>Accessories</u>

Connector housing	Quantity required: 1 x	1 928 403 736
Contact pins	Quantity required: 4 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 4 x; Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number

Micromechanics, hybrid design


Part number

Technical data					
Parameter			min.	type	max.
Pressure range kPa (p_1p_2)			20		250
Operating temperature	ϑ _B	°C	-40		+130
Supply voltage (1 min)	Uv	V	4,75	5	5,25
Load resistance to U_v or ground	$R_{ m pull-up}$	kΩ	5		
Load resistance to U_v or ground	$R_{\scriptscriptstyle \mathrm{pull} ext{-down}}$	kΩ	10		
Response time	$ au_{ ext{10/90}}$	ms			1
Limit data					
Storage temperature	$\vartheta_{\scriptscriptstyle L}$	°C	-40		+130

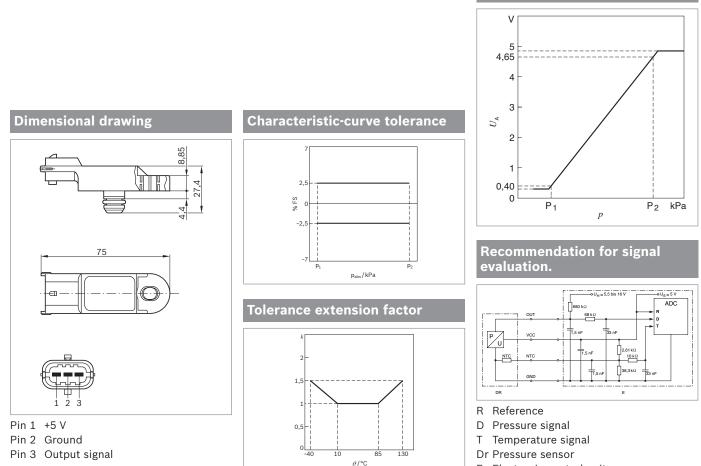
0 281 002 593

Characteristic curve

Pa		10		m		a I	
	:		14		-	51	

Connector housing	Quantity required: 1 x	1 928 403 966
Contact pins	Quantity required: 3 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 3 x; Contents: 10 x	1 928 300 599

Micromechanics, hybrid design


Part number

Technical data Parameter min. type max. Pressure range kPa ($p_1...p_2$) 20 250 Operating temperature ϑ_B °C -40 +130 V Supply voltage (1 min) $U_{\rm v}$ 4,75 5 5,25 Load resistance to $U_{\rm v}$ or ground $R_{\text{pull-up}}$ kΩ 5 Load resistance to U_v or ground kΩ 10 R_{pull-down} Response time 1 ms $\tau_{10/90}$ Limit data ϑ_1 °C Storage temperature -40 +130

0 281 002 616

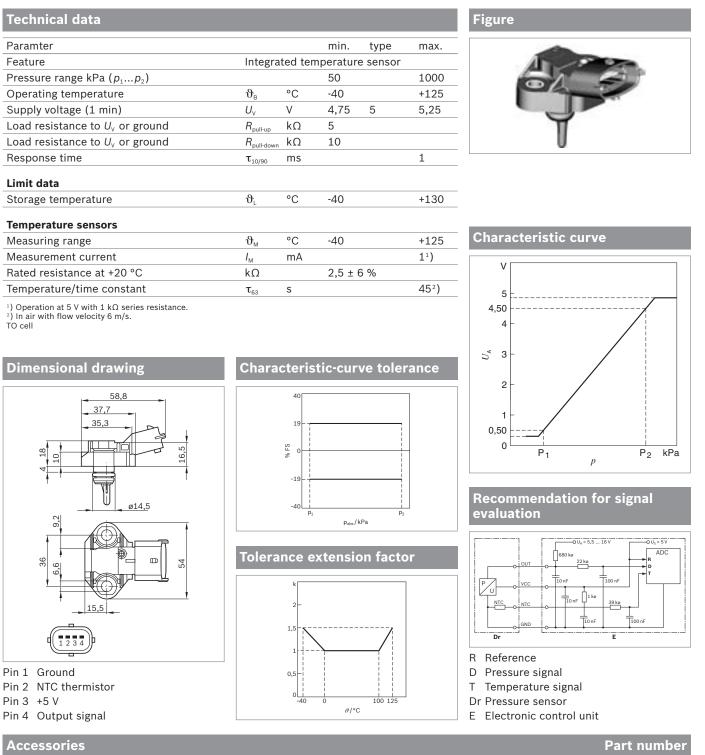
Characteristic curve

E Electronic control unit

Accessories

Connector housing	Quantity required: 1 x	1 928 403 966
Contact pins	Quantity required: 3 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 3 x; Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Part number

0 281 002 693

Absolute-pressure sensors

Micromechanics, hybrid design

Part number

Connector housing	Quantity required: 1 x	1 928 403 736
Contact pins	Quantity required: 4 x; Contents: 100 x	1 928 498 060
Individual seals	Quantity required: 4 x; Contents: 10 x	1 928 300 599

- Available as separate component or fitted in an extremely robust housing.
- ▶ EMC protection up to 100 Vm⁻¹
- ▶ With temperature compensation
- Ratiometric output signal
- All sensors and sensor cells are resistant to fuels (including diesel) and oils such as engine oil.

Application

Monolithically integrated silicon pressure sensors are extremely precise measuring elements for determining absolute pressure. They are particularly suitable for use under harsh ambient conditions, such as the measurement of the absolute intakemanifold pressure in internal-combustion engines.

Signal evaluation

The pressure sensor supplies an analog output signal which has a ratiometric relationship with the supply voltage. It is advisable to fit the input stage of the downstream electronics with an RC low-pass filter (e.g. t = 2 ms) to suppress any interference due to harmonics. In the version with integrated temperature sensor, this consists of an NTC thermistor (to be used in conjunction with a series resistor) for measurement of the ambient temperature.

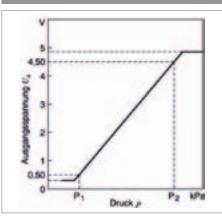
Design and operation

The sensor contains a silicon chip with etched pressure diaphragm. A change in pressure causes elongation of the diaphragm and this is recorded by an evaluation circuit on the basis of changes in resistance. The circuit is integrated on the silicon chip together with electronic calibration elements. When manufacturing the silicon chip, a silicon wafer containing a number of sensor elements is attached to a glass plate. Once sawn into individual chips, each chip is soldered onto a metal base with pressure connection. The pressure is routed via the connection and the base to the back of the pressure diaphragm. A reference vacuum permitting measurement of the absolute pressure and at the same time protecting the front of the pressure diaphragm is enclosed beneath the cap, which is welded to the base. The programming logic on the chip performs calibration. The calibration parameters are permanently stored by means of thyristors (zener zapping) and etched conductive paths. The calibrated and tested sensors are fitted in a special housing for attachment to the intake manifold (refer to product range).

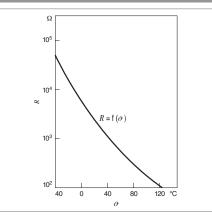
Version

Sensors with housing:

This version features a sturdy housing. On the version with temperature sensor, the sensor is located in the housing. Sensors without housing: Enclosure similar to TO, pressure is supplied through a central pressure connection. The solder-pin assignment is as follows: Pin 6 Output voltage UA, Pin 7 Ground, Pin 8 +5 V.

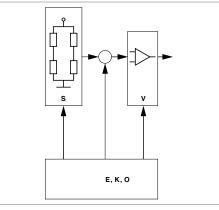

Note

1 connector housing, 3 contact pins and 3 individual seals are required for a 3-pin connector. 1 connector housing, 4 contact pins and 4 individual seals are required for a 4-pin connector.

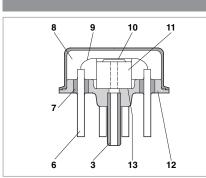

Installation instructions

On installation, the pressure connection should face downwards to stop condensate accumulating in the pressure cell.

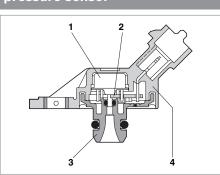
Characteristic curve


Characteristic curve for temperature sensor

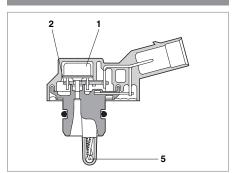
Applies to products with integrated temperature sensor.


Technical data				
Parameter		min	type	max
Current input I_v at U_v = 5 V	mA	6	9	12,5
Lower limit at $U_v = 5 V$	V	0,25	0,3	0,35
Upper limit at $U_v = 5 V$	V	4,75	4,8	4,85
Output resistance to ground, U_v open	kΩ	2,4	4,7	8,2
Output resistance to $U_{\rm v}$, ground open	kΩ	3,4	5,3	8,2
Limit data				
Supply voltage U_v	V			16
Recommendation for signal evaluation				
Load resistance to $U_{\rm H}$ = 5.516 V	kΩ		680	

Block diagram


- E Sensitivity
- O Offset
- K Compensation circuit
- S Sensor bridge
- V Amplifier

Pressure sensor in housing


- 3 Pressure connection
- 6 Gland
- 7 Glass coating
- 8 Reference vacuum
- 9 Aluminium bond (bonding wire)
- 10 Sensor chip
- 11 Glass base
- 12 Welded joint
- 13 Soldered joint

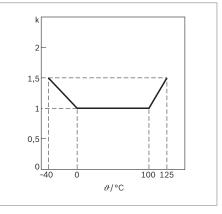
Section through installed pressure sensor

- 1 Pressure sensor
- 2 PCB
- 3 Pressure connection
- 4 Housing

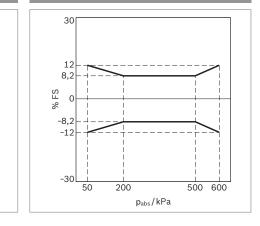
Pressure sensor installed

Version with temperature sensor

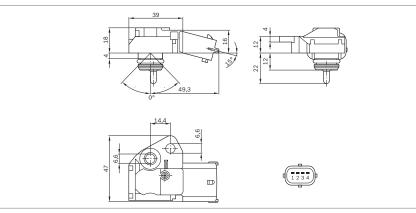
- 1 Pressure sensor
- 2 PCB
- 5 Temperature sensor


Part number

	min.	type	max.
Integr	ated tem	perature se	ensor
kPa	50		600
V	4,75	5	5,25
mA	-1		0,5
ms			1
°C	-40		+130
°C	-40		+130
°C	-40		+130
mA			1
kΩ		2,5 ± 3,5	5 %
	kPa V mA ms °C °C	Integrated tem kPa 50 V 4,75 mA -1 ms - °C -40 °C -40 °C -40 mA -1	Integrated temperature set kPa 50 V 4,75 5 mA -1 ms -40 °C -40 °C -40 mA -1 ms -40 MA -40 MA -40 MA -40 °C -40 MA -40


0 261 230 109

Tolerance extension factor



Characteristic-curve tolerance

Dimensional drawing

¹) Operation with 1 k Ω series resistance.

Pin 1 Ground

Pin 2 NTC thermistor

Pin 3	+5 V
Pin 4	Output signal

Assessation

Accessories		Part Hulliber
Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Bosch Automotive Aftermarket

0 261 230 110

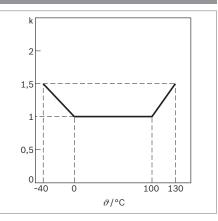
Absolute-pressure sensors

Media-resistant, micromechanical

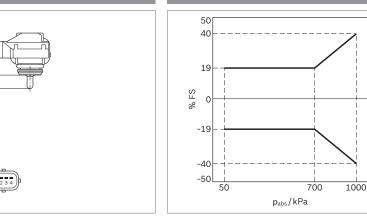
Part number

Technical data				
Parameter		min.	type	max.
Features	Integr	ated ten	perature s	sensor
Pressure range (p_1p_2)	kPa	50		1000
Supply voltage U_v	V	4,75	5	5,25
Load current I_{L} at output	mA	-1		0,5
Response time $\tau_{_{10/90}}$	ms			1
Operating temperature	°C	-40		130

Temperature sensor


•		
Measuring range	°C -40	+130
Measurement current ¹)	mA	1
Rated resistance at +20°C	kΩ	2,5 ± 3,5 %

 $^{\scriptscriptstyle 1}\mbox{)}$ Operation with 1 k Ω series resistance.


Dimensional drawing

Tolerance extension factor

Characteristic-curve tolerance

Pin 1 Ground

Accessories

Pin 2 NTC thermistor

Pin 3 +5 V Pin 4 Output signal

Part	number
------	--------

Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

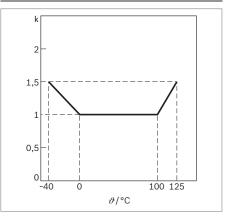
Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Ш

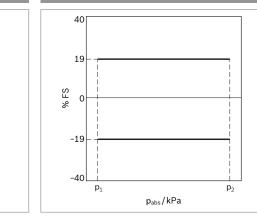
2013 | 2014

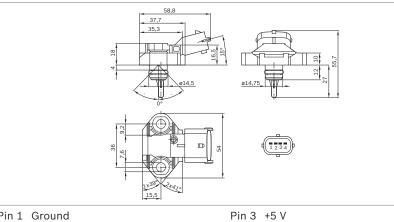
Part number

Technical data				
Parameter		min.	type	max.
Features	Integr	ated tem	nperature ser	isor
Pressure range (p_1p_2)	kPa	50		1000
Supply voltage $U_{\rm v}$	V	4,75	5	5,25
Load current $I_{\rm L}$ at output	mA	-1		0,5
Response time $ au_{\scriptscriptstyle 10/90}$	ms			1
Operating temperature	°C	-40		+125
Limit data				
Operating temperature	°C	-40		+130
Temperature sensor				
Measuring range	°C	-40		+125
Measurement current ¹)	mA			1
Rated resistance at +20°C	kΩ		2,5 ± 6 %	
Temperature/time constant $\tau_{_{63}{}^2}$)	S			45
1) Operation with 1 kO series resistance				


 $^{\rm 1})$ Operation with 1 k Ω series resistance. $^{\rm 2})$ In air with flow velocity 6 m/s.

0 261 230 112


Figure


Tolerance extension factor

Characteristic-curve tolerance

Dimensional drawing

Pin 1 Ground

Pin 2 NTC thermistor

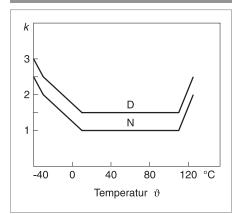
|--|

Accessories		Part number
Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Pin 4 Output signal

Media-resistant, micromechanical


Part number

Technical data				
Parameter		min.	type	max.
Features	Integr	ated tem	nperature ser	nsor
Pressure range (p_1p_2)	kPa	50		350
Supply voltage U_v	V	4,5	5	5,5
Load current I_{L} at output	mA	-0,1		0,1
Load resistance to ground or $U_{\rm v}$	kΩ	50		
Response time $\tau_{\scriptscriptstyle 10/90}$	ms		0,2	
Operating temperature	°C	-40		+125
Limit data Operating temperature	°C	-40		+130
Recommendation for signal evaluation				
Load resistance to ground	kΩ		100	
Low-pass resistance	kΩ		21,5	
Low-pass capacitance	nF		100	
Temperature sensor				
Measuring range	°C	-40		+125
Measurement current ¹)	mA			1
Rated resistance at +20°C	kΩ		2,5 ± 5 %	
Temperature/time constant $ au_{_{63}}{}^2$)	S			45
1) Operation with 1 kO corrige registrance				

0 281 002 244

Tolerance extension factor

Characteristic-curve tolerance

0,2 0,4 0,6 0,8

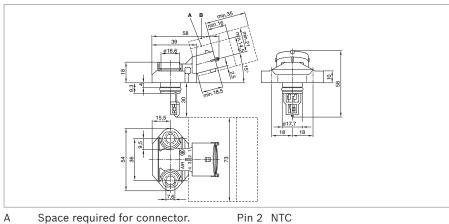
Druck p kPa

1.0

 $\frac{\Delta p}{p}$ 3 2

1

0


-1 -2

-3

0

$^{1})$ Operation with 1 k Ω series resistance. $^{2})$ In air with flow velocity 6 m/s.

Dimensional drawing

Space required for connector. А

В Space required for connection.

Pin 1 Ground

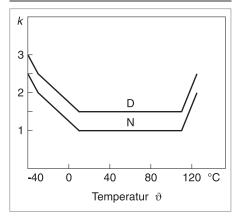
- Pin 3 +5 V
- Pin 4 Output signal

Accessories			Part number
Connector housing			1 928 403 913
Contact pin		Tyco number	2-929 939-6 ¹)
Individual seal	Contents: 50 x		1 987 280 106

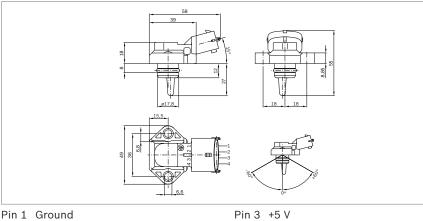
Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

¹) Available from Tyco Electronics.

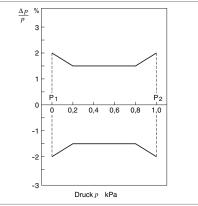
Part number


Technical data				
Parameter		min.	type	max.
Features	Integr	ated tem	perature sei	nsor
Pressure range (p_1p_2)	kPa	50		400
Supply voltage U_v	V	4,5	5	5,5
Load current I_{L} at output	mA	-0,1		0,1
Load resistance to ground or $U_{\rm v}$	kΩ	50		
Response time $\tau_{_{10/90}}$	ms		0,2	
Operating temperature	°C	-40		+125
Limit data				
Operating temperature	°C	-40		+130
Recommendation for signal evaluation				
Load resistance to ground	kΩ		100	
Low-pass resistance	kΩ		21,5	
Low-pass capacitance	nF		100	
Temperature sensor				
Measuring range	°C	-40		+125
Measurement current ¹)	mA			1
Rated resistance at +20°C	kΩ		2,5 ± 5 %	
Temperature/time constant $ au_{{}_{63}{}^2}$)	S			45
$^{1})$ Operation with 1 k Ω series resistance. $^{2})$ In air with flow velocity 6 m/s.				

0 281 002 316


Figure

Tolerance extension factor



Dimensional drawing

Pin 1 Ground Pin2 NTC

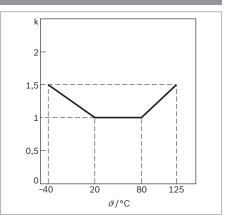
Accessories		Part number
Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Individual seal	For Ø 0.51.0 mm2 ² ; Contents: 10 x	1 928 300 599
Individual seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Pin 4 Output signal

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

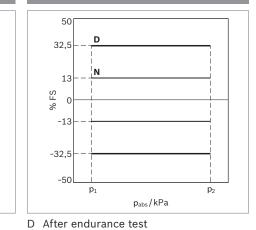
Bosch Automotive Aftermarket

Media-resistant, micromechanical


Part number

Technical data				
Parameter		min.	type	max.
Pressure range (p_1p_2)	kPa	50		600
Supply voltage U_v	V	4,75	5	5,25
Load current I_{L} at output	mA	-1		0,5
Response time $\tau_{_{10/90}}$	ms		1	
Operating temperature	°C	-40		+125
Limit data				
Operating temperature	°C	-40		+125

0 281 002 668



Tolerance extension factor

Characteristic-curve tolerance

N As-new condition

Pin 1 +5 V Pin 2 Ground

Accessories

Dimensional drawing

72,3

Pin 3 Output signal

ø17,8

Part number

3-pin	1 928 403 966
For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
	1 928 300 601
	For Ø 0.51.0 mm ² ; Contents: 100 x For Ø 1.52.5 mm ² ; Contents: 100 x For Ø 0.51.0 mm ² ; Contents: 10 x

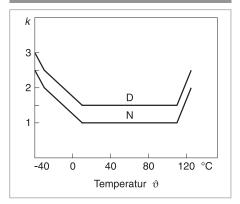
1,5

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

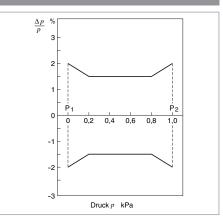
2

25,

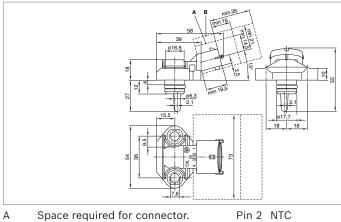
Media-resistant, micromechanical


Part number

Technical data				
Parameter		min.	type	max.
Features	Integr	ated ten	nperature sen	isor
Pressure range (p_1p_2)	kPa	50		600
Supply voltage $U_{\rm v}$	V	4,5	5	5,5
Load current $I_{\rm L}$ at output	mA	-0,1		0,1
Load resistance to ground or $U_{\rm v}$	kΩ	50		
Response time $\tau_{_{10/90}}$	ms		0,2	
Operating temperature	°C	-40		+125
Limit data				
Operating temperature	°C	-40		+130
Recommendation for signal evaluation				
Load resistance to ground	kΩ		100	
Low-pass resistance	kΩ		21,5	
Low-pass capacitance	nF		100	
Temperature sensor				
Measuring range	°C	-40		+125
Measurement current ¹)	mA			1
Rated resistance at +20°C	kΩ		2,5 ± 5 %	
Temperature/time constant $ au_{{}_{63}{}^2}$)	S			45


0 281 006 282

Tolerance extension factor



Characteristic-curve tolerance

 $^{1})$ Operation with 1 k Ω series resistance. $^{2})$ In air with flow velocity 6 m/s.

Dimensional drawing

В

Space required for connection. Pin 3 +5 V Pin 4 Output signal

Pin 1 Ground Accessories

Part number

Connector housing	4-pin	1 928 403 736
Contact pins	for Ø 0.51.0 mm ² ; content: 100 x	1 987 498 056
Contact pins	for Ø 1.52.5 mm²; content: 100 x	1 928 498 057
Single-wire seal	for Ø 0.51.0 mm²; content: 10 x	1 928 300 599
Single-wire seal	for Ø 1.52.5 mm²; content: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Notes

High-pressure sensors

- Ratiometric signal evaluation (relative to supply voltage)
- Self-monitoring offset and sensitivity.
- Excellent media resistance as the medium only comes into contact with stainless steel.
- Resistant to brake fluids, mineral oils, fuel, water and air.
- Protection against reverse polarity, overvoltage and short circuit of the output to supply voltage or ground.

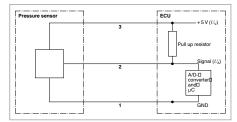
Storage conditions

Temperature range: -30...+60 °C Rel. humidity: 0...80 % rF Maximum storage time: 5 years The specified storage conditions do not cause any change in function. The sensors are no longer to be used once the maximum storage time has expired.

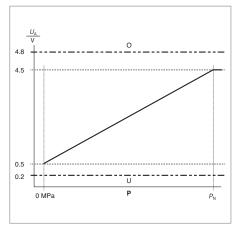
Application

Pressure sensors of this type are used in motor vehicles to measure the pressure in a braking system or in the fuel rail of direct-injection gasoline engines or common-rail system diesel engines.

Explanation of characteristic quantities


- $U_{\rm A}$ Output voltage
- U_v Supply voltage
- bar Pressure
- U_s Input voltage
- p Pressure [MPa]
- C₀ 0.1
- $C_1 \quad 0.8 \cdot p / P_N$
- $P_{\rm N}$ Rated pressure [MPa]
- For 0 265 005 303:
- C₀ 0.75
- $C_1 = 0.12 \cdot p / P_N$

Design and operation


Use is made of polysilicon metal thin-film strain gauge elements. These are connected to form a Wheatstone bridge. This permits good signal utilisation and temperature compensation. The measurement signal is amplified in an evaluation IC and corrected with regard to offset and sensitivity. Further temperature compensation is then implemented, so that the calibrated measurement cell and ASIC unit exhibits only a low degree of dependence on temperature. The evaluation IC also incorporates a diagnosis function for detection of the following possible faults: - Break in bonding wire to measurement cell. - Break in any signal wire at any point. - Break in supply and ground wire at any point.

Only for 0 265 005 303 The following additional diagnosis function distinguishes this sensor from conventional sensors: The comparison of two signal paths in the sensor permits detection of - Offset error -Amplification error.

Measurement circuit

Characteristic curve

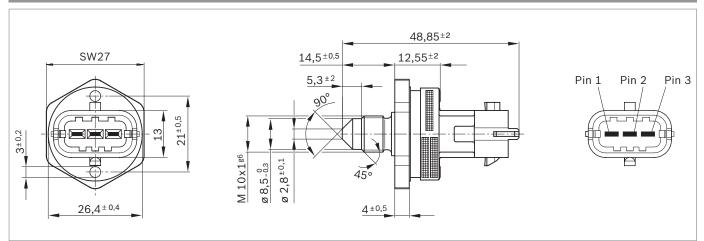
 $U_{\rm A} = (C_1 + C) \cdot U_{\rm S}$

O Upper range for signal range check SRCU Lower range for signal range check SRC

High-pressure sensors Measurement up to 14 MPa

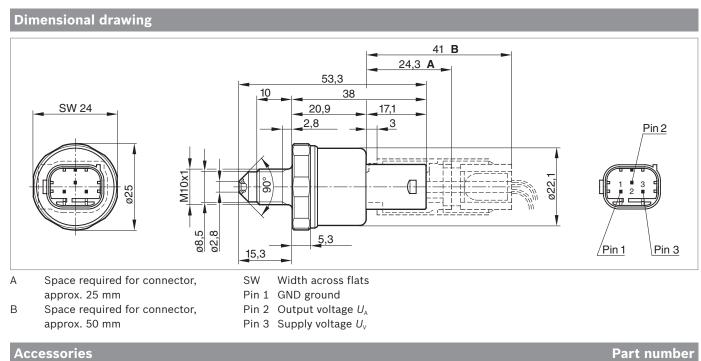
Part number

Techni	cal	data	


Pressure range	P _N	bar (MPa)	140 (14)
	<i>I</i> ⁻ N	υαι (ΙνιΓα)	. ,
Pressure-sensor type			KV4.2
Thread			M 10 x 1
Connector			Compact 1.1
Application/medium			Unleaded fuel
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Supply current	I_{v}	mA	1215
Load capacitance to ground		nF	13
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	1800
Rupture pressure	$p_{ m berst}$	bar	>1500
Response time	$\tau_{_{10/90}}$	ms	2

0 261 545 053

1)FS=Full Scale


High-pressure sensors Measurement up to 25 MPa

Part number

0 265 005 303

Technical data				Figure
Pressure range	P _N	bar (MPa)	250 (25)	
Thread			M 10 x 1	Contraction from
Connector			PSA	and the beautier
Application/medium			Brake fluid	C The law
Accuracy of offset	Uv		2,0 %	
Accuracy of sensitivity at 5 V -				
in range 035 bar	FS 1)	of measured val	ue ≤0,7 %	
Accuracy of sensitivity at 5 V -				
in range 35250 bar	FS 1)	of measured val	ue ≤ 5,0 % ³)	
Supply voltage	Uv	V	5 ± 0,25	
Supply current	$I_{\rm v}$	mA	≤ 20	
Output current	I _A	µAmA	-1003	
Temperature range		°C	- 40+ 120	
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	350	
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	> 500	
Tightening torque	Ma	Nm	20 ± 2	

1) FS = Full Scale. ³) of measured value.

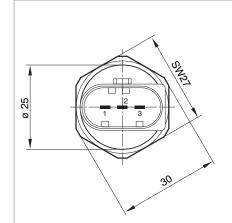
Connector housing	Tyco number	2-967 642-1 ¹)
Contact pins	Tyco number	965 907-1 ¹)
Individual seal	Tyco number	967 067-1 ¹)

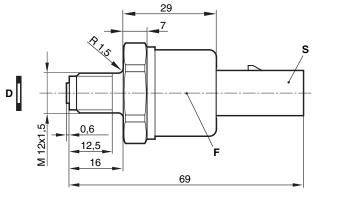
Accessories are not included in the scope of delivery and are therefore to be ordered separately as required. 1) Available from Tyco Electronics

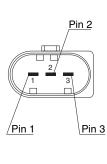
High-pressure sensors Measurement up to 150 MPa

Part number

_


Technical data			
Pressure range	P _N	bar (MPa)	1500 (150)
Thread			M 12 x 1,5
Application/medium			Diesel fuel or biodiesel ²)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Supply current	I _v	mA	915
Tightening torque	$M_{\rm a}$	Nm	35 ± 5
Pressure-sensor type			RDS2
Connector			Make circuit
Pin			Silver-plated
Accuracy of offset	U_{v}		1,0 % FS
Accuracy of sensitivity at 5 V -			
in range 035 bar	FS 1) (of measured value	1,0 %
Accuracy of sensitivity at 5 V -			
in range 351500 bar	FS 1) (of measured value	2,0 %
Output current	I _A	µAmA	2,5 mA 4)
Load capacitance to ground		nF	10
Temperature range		°C	- 40+ 120 ⁵)
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	1800
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	3000
Response time	$ au_{10/90}$	ms	5


0 281 002 238



1) FS = Full Scale. 2) RME rapeseed methyl ester. 4) Output current with pull-up resistor. 5) +140 °C for max. 250 h.

Dimensional drawing

- D Sealing washer
- F Date of manufacture
- SW Width across flats
- S 3-pin connector

M 12x1,	<u>12,5</u> 16	F
		69

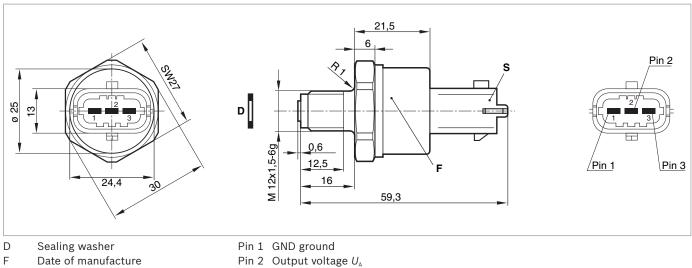
- Pin 1 GND ground
- Pin 2 Output voltage U_A
- Pin 3 Supply voltage U_v
- Accessories Part number Connector housing Kostal number 9 441 391¹) Kostal number 22 124 492 060¹) Contact pins Kostal number 10 800 444 5221) Single-wire seal

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. ¹) Available from Kostal Deutschland.

High-pressure sensors Measurement up to 150 MPa

Part number

_


0 281 002 522

Technical data			
Pressure range	P _N	bar (MPa)	1500 (150)
Thread			M 12 x 1,5
Application/medium			Diesel fuel or biodiesel ²)
Max. feed voltage	Us	V	16
Supply voltage	U_{v}	V	5 ± 0,25
Supply current	I_{v}	mA	915
Tightening torque	Ma	Nm	35 ± 5
Pressure-sensor type			RDS3
Connector			Compact 1.1
Pin			Gold-plated
Accuracy of offset	$U_{ m v}$		0,7 % FS
Accuracy of sensitivity			
at 5 V - in range 351500 bar	FS 1)	of measured value	1,5 %
Load capacitance to ground		nF	13
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	2200
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	4000
Response time	$\tau_{\rm 10/90}$	ms	2

¹) FS = Full Scale.
 ²) RME rapeseed methyl ester.

Dimensional drawing

SW Width across flats

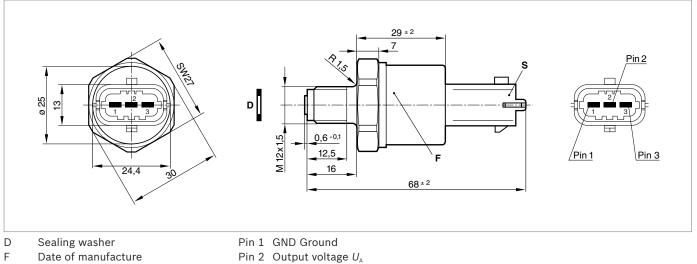
S 3-pin connector

Accessories		Part number
Connector housing		1 928 403 968
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

Pin 3 Supply voltage U_v

High-pressure sensors Measurement up to 180 MPa

Part number


Technical data			
Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	U_{v}	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS2
Thread			M 12 x 1,5
Connector			Compact 1.1
Pin			Gold-plated
Application/medium			Diesel fuel or biodiesel ²)
Accuracy of offset	$U_{\rm v}$		1,0 % FS
Accuracy of sensitivity at 5 V -			
in range 035 bar	FS 1) (of measured value	1,0 %
Accuracy of sensitivity at 5 V -			
in range 351800 bar	FS 1) of measured value		2,3 %
Supply current	I_{\vee}	mA	915
Output current	I _A	µAmA	2,5 4)
Temperature range		°C	- 40+ 120
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	2100
Rupture pressure	$p_{\scriptscriptstyle \mathrm{berst}}$	bar	3500
Tightening torque	Ma	Nm	70 ± 2
Response time	$ au_{ m 10/90}$	ms	5

0 281 002 398

1) FS = Full Scale. 2) RME rapeseed methyl ester. 4) Output current with pull-up resistor. 5) +140°C for max. 250 h.

Dimensional drawing

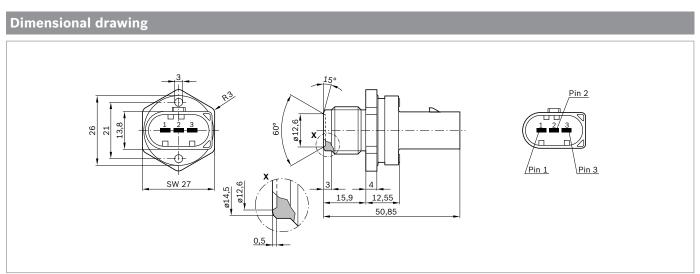
- S 3-pin connector
- Pin 3 Supply voltage U_v
- SW Width across flats

Accessories		Part number
Connector housing		1 928 403 968
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

High-pressure sensors Measurement up to 180 MPa

Part number

Technical data


Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS4.1
Thread			M 18 x 1,5
Pin			Silver-plated
Application/medium			Diesel fuel or biodiesel ²)
Supply current	$I_{\rm V}$	mA	915
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	230
Rupture pressure	$p_{ m berst}$	bar	400
Response time	$\tau_{_{10/90}}$	ms	2

0 281 002 671

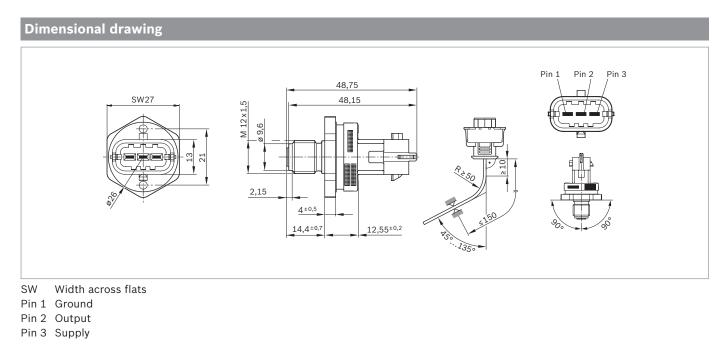
²) RME rapeseed methyl ester. Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Pin 1 Ground

Pin 2 Output

Pin 3 Supply

Accessories		Part number
Connector housing	Kostal number	9 441 391 ¹)
Contact pins	Kostal number 22	2 124 492 060 ¹)
Single-wire seal	Kostal number 10	0 800 444 522 ¹)


Part number

Technical data			
Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS4.1
Thread			M 12 x 1,5
Connector			Compact 1.1
Pin			Gold-plated
Application/medium			Diesel fuel or biodiesel ²)
Supply current	$I_{\rm v}$	mA	915
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	230
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	400
Response time	$\tau_{\rm 10/90}$	ms	2

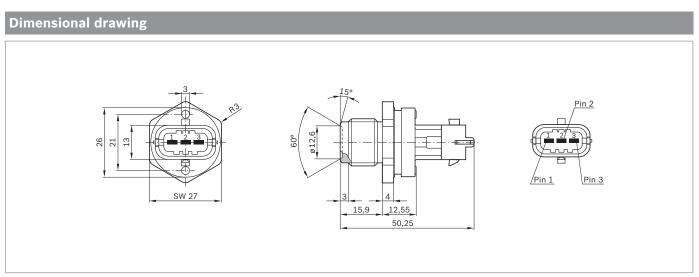
0 281 002 767

²) RME rapeseed methyl ester.

Accessories		Part number
Connector housing	1 928 403 968	
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number


0 281 002 841

Technical data			
Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS4.1
Thread			M 18 x 1,5
Connector			Compact 1.1
Pin			Gold-plated
Application/medium			Diesel fuel or biodiesel ²)
Supply current	I _v	mA	915
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	230
Rupture pressure	$p_{\scriptscriptstyle berst}$	bar	400
Response time	$\tau_{_{10/90}}$	ms	2

Figure

²) RME rapeseed methyl ester.

Pin 1 Ground

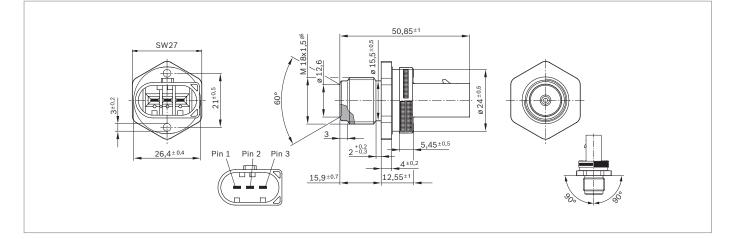
Pin 2 Output

Pin 3 Supply

Accessories		Part number
Connector housing	1 928 403 968	
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number

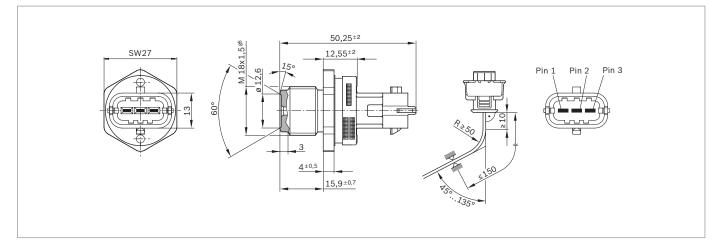

P _N	bar (MPa)	1800 (180)
Us	V	16
Uv	V	5 ± 0,25
	nF	10
		RDS4
		M 18 x 1,5
		Diesel or biodiesel 2)
	°C	- 40+ 130
$p_{\scriptscriptstyle max}$	bar	2300
$p_{ m berst}$	bar	4000
$ au_{10/90}$	ms	2
	P _{max}	V U _s V U _V V nF o C p _{max} bar p _{berst} bar

0 281 002 842

²) RME rapeseed methyl ester.

Dimensional drawings

Part number

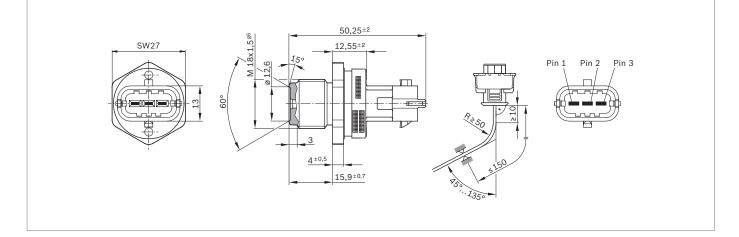

Technical data			
Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS4
Thread			M 18 x 1,5
Application/medium			Diesel or biodiesel ²)
Temperature range			- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	2300
Rupture pressure	$p_{ m berst}$	bar	4000
Response time	$\tau_{_{10/90}}$	ms	2

0 281 002 930

¹) FS = Full Scale.
 ²) RME rapeseed methyl ester.
 ⁴) Output current with pull-up resistor.
 ⁵) +140°C for max. 250 h.

Dimensional drawings

Part number

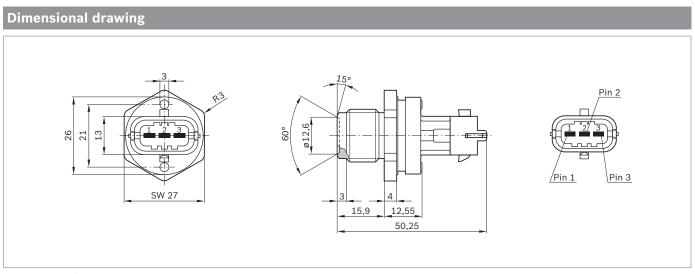

Pressure range	P _N	bar (MPa)	1800 (180)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Load capacitance to ground		nF	10
Pressure-sensor type			RDS4
Thread			M 18 x 1,5
Application/medium			Diesel or biodiesel ²)
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	2300
Rupture pressure	$p_{ m berst}$	bar	4000
Response time	$\tau_{10/90}$	ms	2

0 281 002 937

¹) FS = Full Scale.
 ²) RME rapeseed methyl ester.
 ⁴) Output current with pull-up resistor.
 ⁵) +140°C for max. 250 h.

Dimensional drawings

Part number


0 281 002 755

Technical data			
Pressure range	P _N	bar (MPa)	2000 (200)
Pressure-sensor type			RDS4.1
Thread			M 18 x 1,5
Connectors			Compact 1.1
Pin			Gold-plated
Application/medium			Diesel fuel or biodiesel ²)
Max. feed voltage	Us	V	16
Supply voltage	U_{v}	V	5 ± 0,25
Supply current	I _v	mA	915
Load capacitance to ground		nF	10
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	230
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	400
Response time	$\tau_{_{10/90}}$	ms	2

Figure

²) RME rapeseed methyl ester.

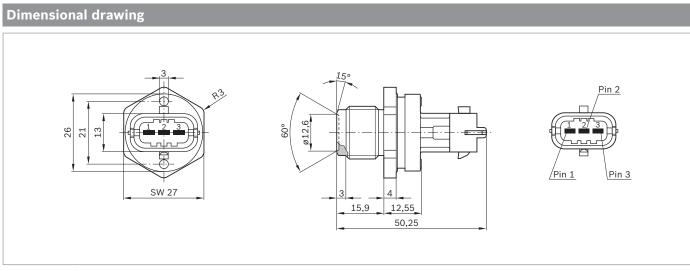
Pin 1 Ground

Pin 2 Output

Pin 3 Supply

Accessories		Part number
Connector housing		1 928 403 968
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

ded in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Part number

Technical data			
Pressure range	P _N	bar (MPa)	2000 (200)
Pressure-sensor type			RDS4.1
Thread			M 18 x 1,5
Connectors			Compact 1.1
Pin			Gold-plated
Application/medium			Diesel fuel or biodiesel ²)
Max. feed voltage	Us	V	16
Supply voltage	Uv	V	5 ± 0,25
Supply current	I _v	mA	915
Load capacitance to ground		nF	10
Temperature range		°C	- 40+ 130
Max. overpressure	$p_{\scriptscriptstyle max}$	bar	230
Rupture pressure	$p_{\scriptscriptstyle m berst}$	bar	400
Response time	$\tau_{\rm 10/90}$	ms	2

0 281 002 787

²) RME rapeseed methyl ester.

Pin 1 Ground

Pin 2 Output

Pin 3 Supply

Accessories		Part number
Connector housing		1 928 403 968
Contact pins	Contents: 100 x	1 928 498 054
Single-wire seal	Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Media-resistant, micromechanics

- Available both non-fitted and fitted in an extremely robust housing.
- ► EMC protection up to 100 Vm⁻¹
- ► With temperature compensation
- Ratiometric output signal
- All sensors and sensor cells are resistant to fuels (including diesel) and oils, e.g. engine oil.

Application

Monolithically integrated silicon pressure sensors are high-precision measuring elements for determining absolute pressure. They are particularly suitable for use under rough ambient conditions e.g. for measuring the absolute intake manifold pressure of internal combustion engines.

Signal evaluation

The pressure sensor supplies an analog output signal with a ratiometric relationship to the supply voltage. An RC low-pass filter with e.g. t = 2 ms is recommended in the input section of the downstream electronics to suppress any harmonic interference. On the version with integrated temperature sensor, this consists of an NTC thermistor (to be operated with a series resistor) for measuring the ambient temperature.

Design and operation

The sensor contains a silicon chip with an etched pressure diaphragm. A change in pressure produces elongation of the diaphragm, which is recorded by an evaluation circuit by way of changes in resistance. The circuit is integrated on the silicon chip together with electronic?compensating elements. ?Manufacture of the silicon chip involves joining a silicon wafer carrying numerous sensor elements to a glass plate. Following a sawing process to divide this into individual chips, one such chip is soldered onto a metal base with a pressure connection. The pressure is routed by way of the connection and base to the back of the pressure diaphragm. A reference vacuum enclosed under the cap welded to the base permits measurement of the absolute pressure and at the same time protects the front of the pressure?diaphragm. The programming logic on the chip permits adjustment of the output characteristic curve for increased accuracy. The fully calibrated and checked sensors are installed in a special housing for?intake manifold attachment (refer to quotation).

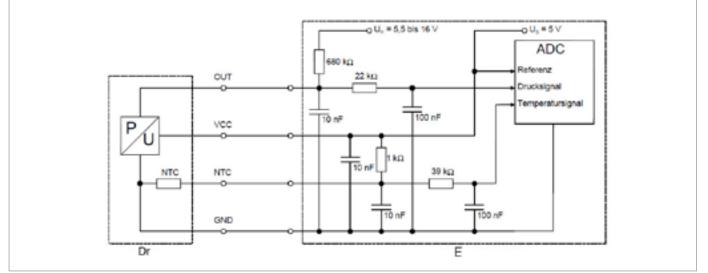
Version

Sensors with housing:?This version is provided with a robust housing. On the version with temperature sensor, the sensor is accommodated in the housing.? Sensors without housing:?Housing similar to TO, pressure supply through a central pressure connection. The following soldering pins are required:?Pin 6 Output voltage UA,?Pin 7 Earth,?Pin 8 +5 V.

Note

1 connector housing, 3 contact pins and 3 individual seals are required for a 3-pin connector.

1 connector housing, 4 contact pins and 4 individual seals are required for a 4-pin connector.


Installation instructions

On installation, the pressure connection should be facing downwards to prevent the accumulation of condensate in the pressure cell.

Media-resistant, micromechanics

Technical data				
Parameter		min	typ	max
Load current I _L at output	mA	-1		0,5
Load resistance to ground or $U_{\rm v}$	kΩ	5		10
Lower limit at $U_v = 5 V$	V	0,25	0,3	0,35
Upper limit at U_v = 5 V	V	4,75	4,8	4,85
Output resistance to ground, U_v open	kΩ			
Output resistance to U_v , ground open	kΩ			
Response time $ au_{\scriptscriptstyle 10/90}$	ms		1	
Operating temperature	°C	-40		130

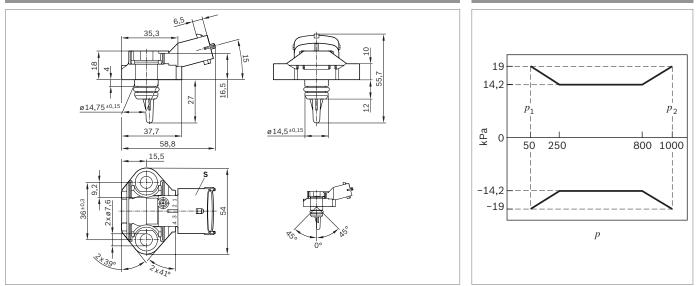
Recommendation for signal evaluation

Dr Pressure sensor

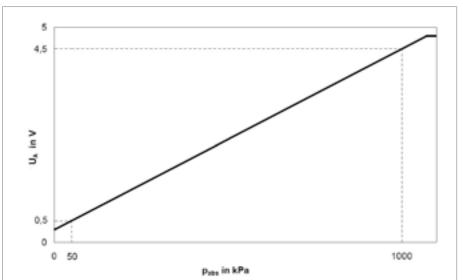
E Electronic control unit

Media-resistant, micromechanics

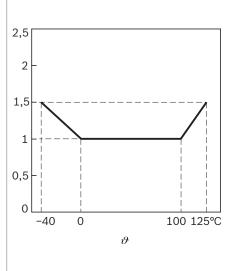
Part number


0 261 230 145

Technical data			
Parameter	min.	type	max.
Product text	Only suitable for CNG		
Pressure range (p_1p_2)	kPa 50		1000



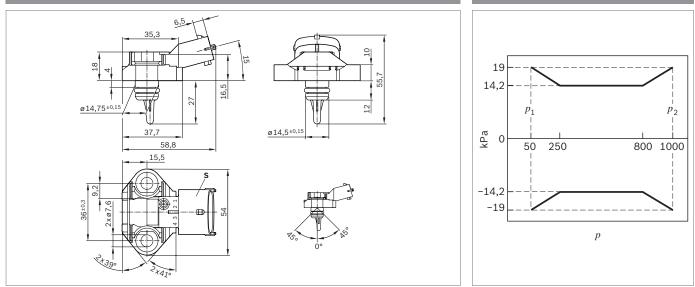
Characteristic curve tolerance


Dimensional drawings

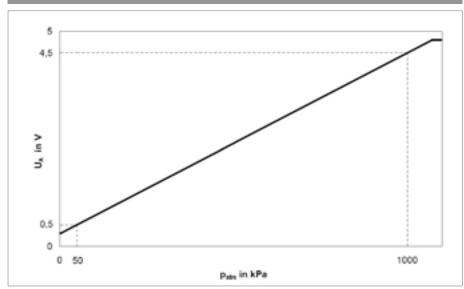
Characteristic curve

Media-resistant, micromechanics

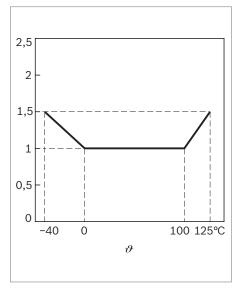
Part number


0 261 230 249

	min.	type	max.
Only suitable for CNG			
kPa	50		1000
V	4,75	5	5,25
	kPa	Only suitable 1 kPa 50	Only suitable for CNG kPa 50



Characteristic curve tolerance


Dimensional drawings

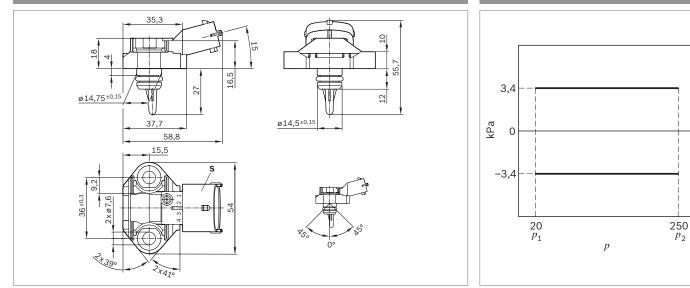
Characteristic curve

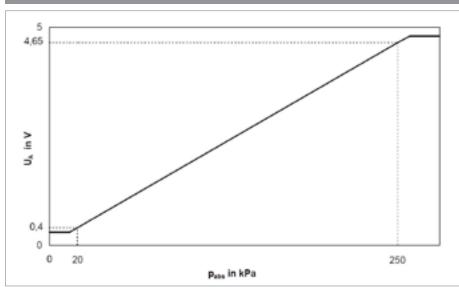
Tolerance extension factor

Media-resistant, micromechanics

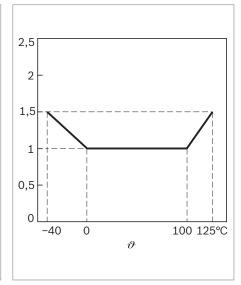
Part number

Technical data Parameter min. type max. Pressure range $(p_1...p_2)$ kPa 20 250 Supply voltage U_v V 4,75 5 5,25 Current input I_v at U_v = 5 V mΑ 6 9 12,5


0 261 230 255

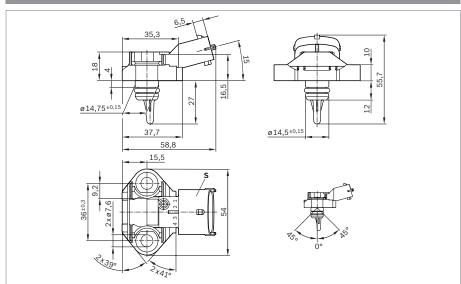

Characteristic curve tolerance

Figure

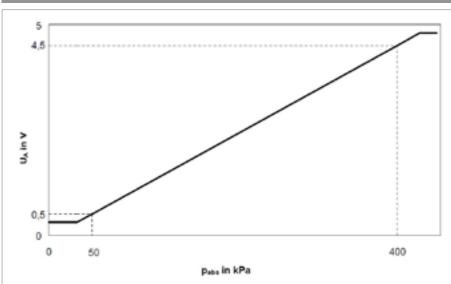

Dimensional drawings

Characteristic curve

Tolerance extension factor


Media-resistant, micromechanics

Part number


Technical data				
Parameter		min.	type	max.
Pressure range (p_1p_2)	kPa	50		400
Supply voltage U_v	V	4,75	5	5,25
Current input I_v at U_v = 5 V	mA	6	9	12,5

Dimensional drawings

Characteristic curve

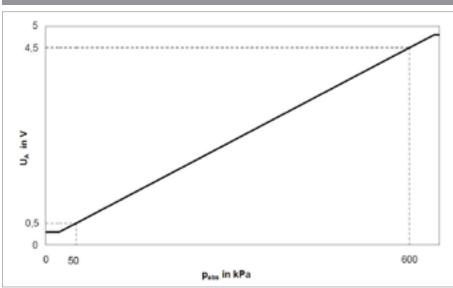
0 261 230 274

Media-resistant, micromechanics

Part number

Technical data				
Parameter		min.	type	max.
Product text	Only a	approved	for CN	G
Pressure range (p_1p_2)	kPa	50		600
Supply voltage U_v	V	4,75	5	5,25
Current input I_v at U_v = 5 V	mA	6	9	12,5

0 261 230 275

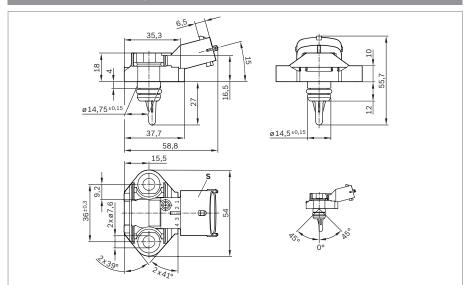

Figure

Dimensional drawings

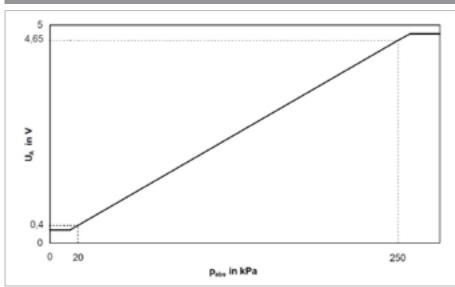
Characteristic curve

0 280 005 620

Pressure sensors for CNG and LPG


Media-resistant, micromechanics

Part number


Technical data				
Parameter		min.	type	max.
Pressure range (p_1p_2)	kPa	20		250
Supply voltage U_v	V	4,75	5	5,25
Current input I_v at U_v = 5 V	mA	6	9	12,5

Dimensional drawings

Characteristic curve

Media-resistant, micromechanics

Part number

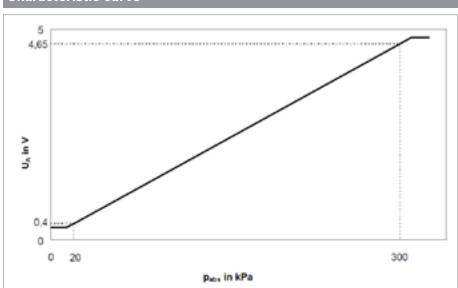
Technical data				
Parameter		min.	type	max.
Pressure range (p_1p_2)	kPa	20		300
Supply voltage U_v	V	4,75	5	5,25
Current input I_v at U_v = 5 V	mA	6	9	12,5

0

-40

0

θ


0 281 006 243

Tolerance extension factor 35,3 읽 2,5 8 55,7 16, 52 27 ø14,75^{±0,15} 12 1,5 ø14,5^{±0,15} 37,7 58,8 15,5 1 6.6 0,5 36 ±0,3

Dimensional drawings

2×410

Bosch Automotive Aftermarket

100 125°C

Notes

NTC temperature sensors: -40°C to 130°C

Measurement of air temperatures

- Measurement with temperature-sensitive resistors.
- ► Broad temperature range.

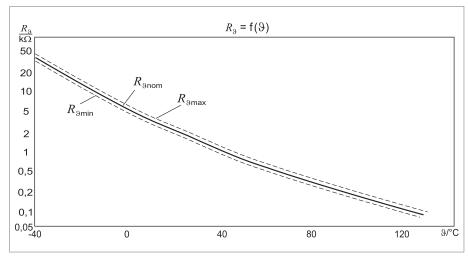
Installation instructions

The sensor is installed such that the front section with the sensing element is directly exposed to the air flow.

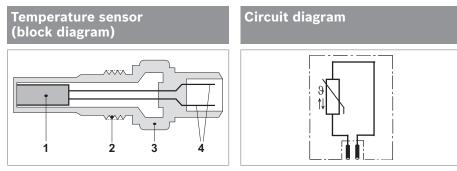
NTC temperature sensor

Plastic-sheathed NTC thermistor

Design and operation


NTC thermistors have a negative temperature coefficient, i.e. their conductivity increases with increasing temperature: Their resistance decreases. The conductive element of the temperature sensor consists of semi-conducting heavy metal oxides and oxidized mixed crystals pressed or sintered into wafers or beads with the aid of binding agents and provided with a protective casing. In combination with a suitable evaluation circuit, such resistors permit precise temperature determination. Depending on the housing design, the sensors are suitable for measuring temperatures in liquids and gases. In motor vehicles they are used to measure the temperature of the intake air, i.e. in the range -40...130 °C.

Note


For a 2-pin connector, 1 connector housing, 2 contact pins and 2 individual seals are required.

Genuine Tyco crimping tools must be used for motor vehicle applications.

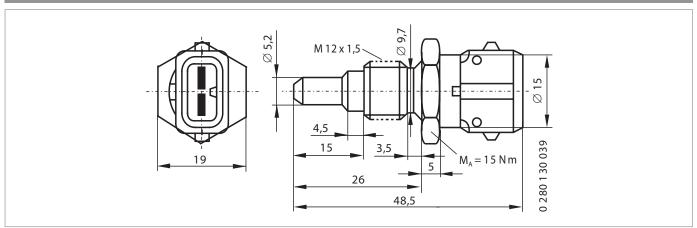
Resistance profile of temperature sensor

RResistance ϑ Temperature

- 1 NTC thermistor
- 2 Screw-in thread
- 3 Housing
- 4 Electrical connection

Part number

Technical data		
Product text		
Sensor in steel housing with threaded connection.		
Perm. temperature max.	°C	130
Rated resistance at 20 °C	kΩ	2,5 ± 5 %
Resistance at -10 °C	kΩ	8,325 10,572
Resistance at +20 °C	kΩ	2,280 2,736
Resistance at +80 °C	kΩ	0,288 0,359
Nominal voltage	V	5 ± 0,15
Max. measurement current	mA	1
Self-heating with		
max. perm. power loss of P = 2 mW and still air (23 °C)) K	≤ 2
Temperature/time constant $ au_{_{63}}{}^{_1}$)	S	≤ 38
Approximate value for permissible		
vibration acceleration <i>a</i> _{sin}		
(sinusoidal vibration)	m/s²	300
Corrosion-tested as per		DIN 50 018


0 280 130 039

Figure

¹) Time required to attain a difference in resistance of 63% of the final value given an abrupt change in measurement temperature from 20°C to 80°C; flow velocity of air 6 m/s .

Dimensional drawing

$P_{\rm N}$ Tightening torque

Accessories		F	Part number
Jetronic connector	2-pin		1 928 402 078
Protective cap	Temperature-resistant; Contents: 1 x		1 280 703 031
Contact pins	For Ø 0.51.0 mm ²	Tyco number	929 939-3 ¹)
Contact pins	For Ø 1.52.5 mm ²	Tyco number	929 937-3 ¹)
Individual seal	For Ø 0.51.0 mm ² ; Contents: 50 x		1 987 280 106
Individual seal	For Ø 1.52.5 mm ² ; Contents: 20 x		1 987 280 107

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required. ¹) Available from Tyco Electronics.

NTC temperature sensors: -40°C to 130°C

Measurement of liquid temperatures

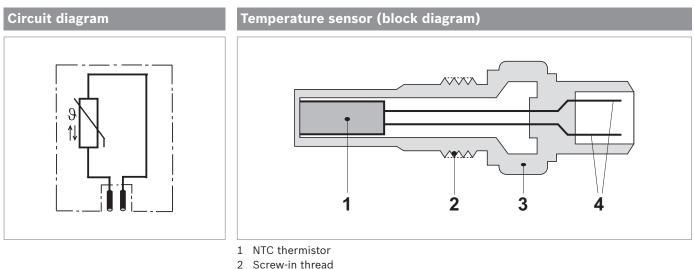
 Wide range of liquid temperature measurements with temperature-sensitive resistors.

NTC temperature sensor

NTC thermistor in brass housing.

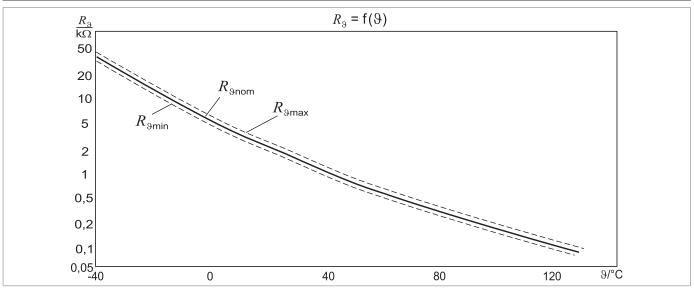
Design and operation

NTC thermistors have a negative temperature coefficient, i.e. their conductivity increases with increasing temperature: Their resistance decreases.?The conductive element of the temperature sensor consists of semi-conducting heavy metal oxides and oxidized mixed crystals pressed or sintered into wafers or beads with the aid of binding agents and provided with a protective casing. In combination with a suitable evaluation circuit, such resistors permit precise temperature determination. Depending on the housing design, the sensors are suitable for measuring temperatures in liquids and gases.?In motor vehicles they are used to measure the temperature of engine oil, coolant and fuel, i.e. in the range -40...130 °C.


Note

For a 2-pin connector, 1 connector housing, 2 contact pins and 2 individual seals are required. Genuine AMP crimping tools must be used for motor vehicle applications.

Explanation of characteristic quantities

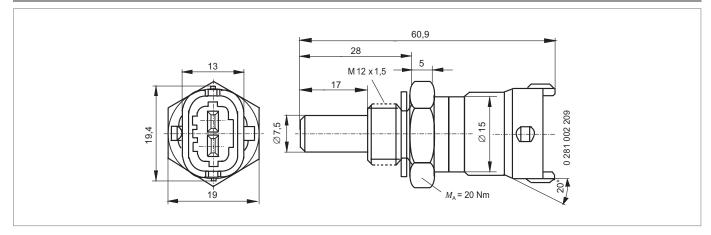

- R Resistance
- ϑ Temperature

Technical data		
Measuring range	°C	- 40+ 130
Approximate value for permissible vibration acceleration <i>a</i> sin		
(sinusoidal vibration)	m/s²	300
Max. measurement current	mA	1

- ∠ Screw-in th
- 3 Housing
- 4 Electrical connection

Resistance profile of temperature sensor

Part number


Technical data		
Product text	Senso	or in brass housing.
Application/medium		Oil/water
Tolerance at +100 °C	K	0,1886 ± 2%
Rated resistance at 100 °C	kΩ	2,5 ± 6 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant $ au_{_{63}}$ 1)	S	≤ 15
Degree of protection 1)		IP 5K 9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN 50 021
Connector		Compact 1.1, tinned pins
Tightening torque	Nm	25
Rated voltage	V	5 ± 0,15

0 281 002 209

1) With single-wire seal.

Dimensional drawing

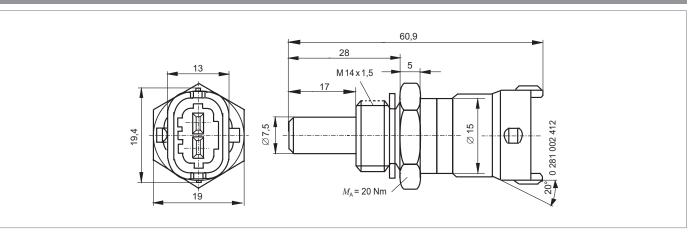
Accessories

Part number

Compact connector 1.1a	2-pin	1 928 403 874
Contact pins	For Ø 0.5 1.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.5 2.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.5 1.0 mm²; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.5 2.5 mm ² ; Contents: 10 x	1 928 300 600

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number


Technical data		
Product text	Senso	or in brass housing.
Application/medium		Oil/water
Tolerance at +100 °C	K	0,1886 ± 2%
Rated resistance at 100 °C	kΩ	2,5 ± 6 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant $ au_{_{63}}$ 1)	S	≤ 15
Degree of protection 1)		IP 5K 9K
Thread		M 14 x 1,5
Corrosion-tested as per		DIN 50 021
Connector		Compact 1.1, tinned pins
Tightening torque	Nm	20
Rated voltage	V	5 ± 0,15

0 281 002 412

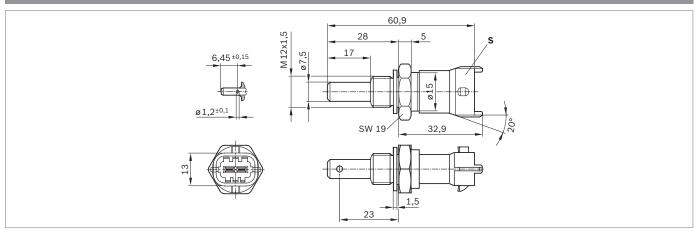
1) With single-wire seal.

Dimensional drawing

Accessories Part number Compact connector 1.1a 2-pin 1 928 403 874

Contact pins	For Ø 0.5 1.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.5 2.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.5 1.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.5 2.5 mm ² ; Contents: 10 x	1 928 300 600

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.


Part number

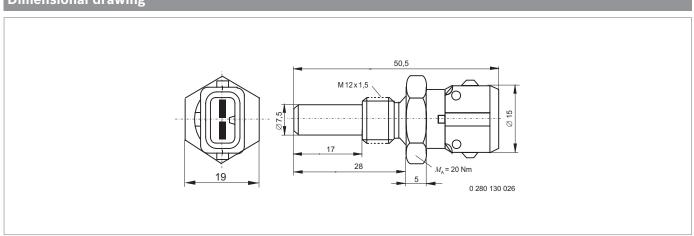
Technical data		
Application/medium		Coolants, fuel, oil
Rated resistance at 100 °C	kΩ	0,1886 ± 2 %
Resistance at -10 °C	kΩ	8,640 9,395
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant $\tau_{_{63}}$ ¹)	S	≈ 15 s
Degree of protection 1)		IP 5K 9K
Thread		M12 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Connector		Compact 1.1, pins gold-plated
Tightening torque	Nm	20
Rated voltage	V	5 ± 1,5

0 281 002 704

Dimensional drawing

Part number

Technical data		
Product text	Senso	or in brass housing.
Application/medium		Oil/water
Rated resistance at 100 °C	kΩ	2,5 ± 5 %
Resistance at -10 °C	kΩ	8,325 10,572
Resistance at +20 °C	kΩ	2,280 2,736
Resistance at +80 °C	kΩ	0,288 0,359
Temperature/time constant $ au_{_{63}}$ 1)	S	≤ 15
Degree of protection 1)		IP 5K9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN 50 021
Connector		Jetronic, tinned pins
Tightening torque	Nm	20
Rated voltage	V	5 ± 0,15


0 280 130 026

Figure

1) With individual seal.

Dimensional drawing

Accessories

	1 0 0 40 0 70
	1 928 402 078
rature-resistant; Contents: 1 x	1 280 703 031
0.51.0 mm ² Tyco number	929 939-3 ¹)
1.52.5 mm ² Tyco number	929 937-3 ¹)
0.51.0 mm²; Contents: 50 x	1 928 498 106
1.52.5 mm²; Contents: 20 x	1 987 280 107
	0.51.0 mm² Tyco number 1.52.5 mm² Tyco number 0.51.0 mm²; Contents: 50 x Tyco number

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

¹) Available from Tyco Electronics.

Part number

Hot-film air mass meter, type HFM 5

Measurement of air-mass flow up to 1200 kg/h

- ► Compact design.
- Low weight
- ► Fast response time
- Low power input.
- Return flow detection

Principle of operation

In the air mass meter, the amount of heat extracted from a heated sensor element by heat transfer from the heating element to the air flow increases with an increasing air mass. The resulting difference in temperature is a measure of the air mass flow. An electronic hybrid circuit evaluates the measurement data and thus permits precise recording of the air volume, including the direction of flow.

The sensor element only detects part of the air mass flow. The total air mass flowing through the measurement tube is determined by calibration (characteristic curve definition).

Design

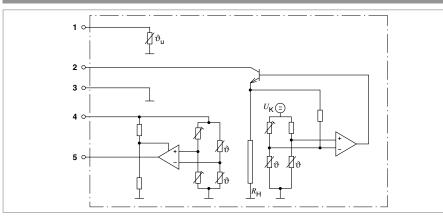
The micromechanical sensor element is located in the flow duct of the plug-in sensor. The plug-in sensor is suitable for installation in air filters or, together with a measurement tube, in the air duct. Measurement tubes of various sizes are available to suit the required air throughput. A micromechanical measurement system with a hybrid circuit permits evaluation of the measurement data to also detect backflow in a pulsating air-mass flow.

Application

To comply with the legally specified emission limits for motor vehicles, a specific air-fuel ratio must be precisely maintained. This requires the use of sensors which accurately record the actual air-mass flow and output this in the form of an electrical signal to the control electronics. The sensor is used to measure the air-mass flow in internal-combustion engines for precise adaption of the injected fuel quantity to the current power requirement, atmospheric pressure and air temperatures.

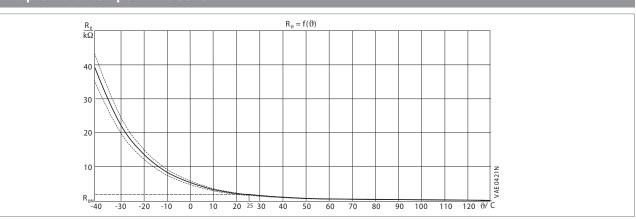
Explanatory notes on characteristic quantities

- $\dot{m}_{_{\rm N}}$ Air mass throughput
- $\Delta \dot{m}$ Absolute accuracy
- $\Delta \dot{m} / \dot{m}$ Relative accuracy
- $\tau\Delta$ Time until measurement error <5%
- $\tau_{_{63}}$ Time until change
 - in measured value 63%

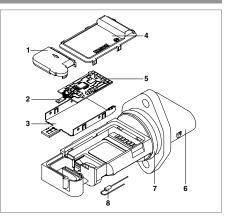

Tec	111		-	
166				5.5

Rated supply voltage	U _N	14V
Supply-voltage range	U_{v}	8 17 V
Accuracy	$\Delta \dot{m} / \dot{m}$	≤ 3 %
Pressure drop at \dot{m}_{N}^{1})	Δp	< 15 hPa
Output voltage	U _A	0 5 V
Current input	I _v	< 0,1 A
Permissible vibration acceleration	av	≤ 150 m/s²
Time constant	τ ₆₃ ²)	≤ 15 ms
Time constant	τΔ³)	≤ 30 ms
Temperature range ⁴)		-40+ 120 °C

¹) Measured between input and output.
 ²) Time required for step response of output voltage to 63% of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h.


³) Delay on switch-one and after any change in flow rate until the output voltage has attained the relative measurement deviation $|\Delta \dot{m}/\dot{m}| \le 5$ %. ⁴) Up to 130°C for brief periods (≤ 3 min.).

Block diagram with pin assignment

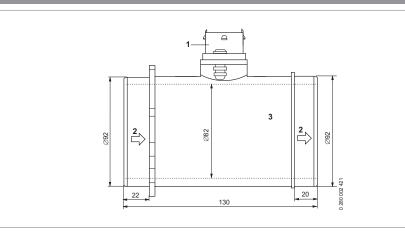


- 1 Additional temperature sensor ϑ_{u} (not for version 4, part no. 0 280 218 008)
- 2 Supply voltage U_v
- 3 Signal ground
- 4 Reference voltage
- Measurement signal U_{A} . 5 V 5
- θ Temperature-sensitivity of resistor
- Heating resistor R_H
- Constant voltage Uκ

Resistance profile of temperature sensor

Design of HFM 5 plug-in sensor

1 Measurement-channel cover

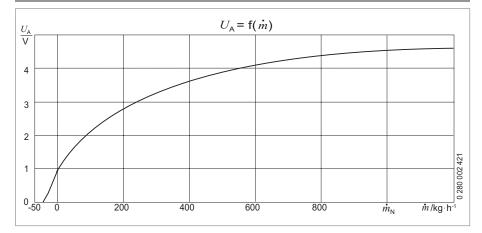

- 2 Sensor
- 3 Mounting plate
- Hybrid cover 4
- Hybrid 5
- Plug-in sensor 6
- O-ring 7
- 8 Additional temperature sensor

Part number

0 281 002 421

Technical data		Figure
Product text	With ambient-temperature sensor.	
Measuring range	$\dot{m}_{\rm N}$ -50 1200 kg/h	

Dimensional drawing



1 Plug-in sensor

2 Flow direction

3 Measurement tube

Air-mass characteristic curve at ambient temperature

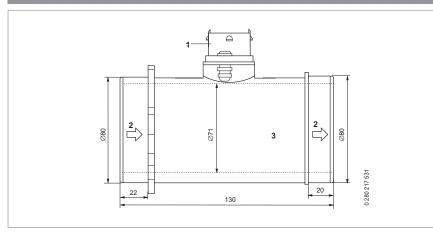
Part number

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

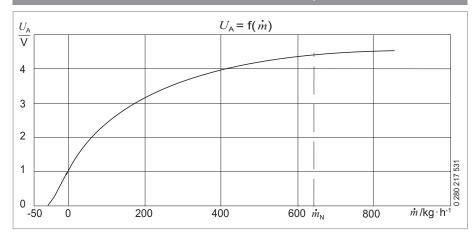
Bosch Automotive Aftermarket

Part number


0 280 218 087

Technical data

Product text Measuring range With ambient-temperature sensor. -30 ... 850 kg/h $\dot{m}_{\scriptscriptstyle \rm N}$



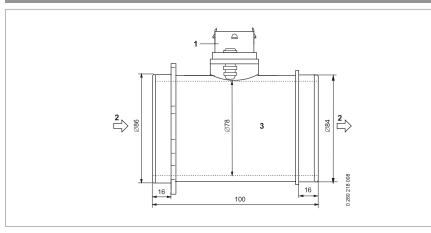
Dimensional drawing

- 1 Plug-in sensor 2 Flow direction
- 3 Measurement tube

Air-mass characteristic curve at ambient temperature

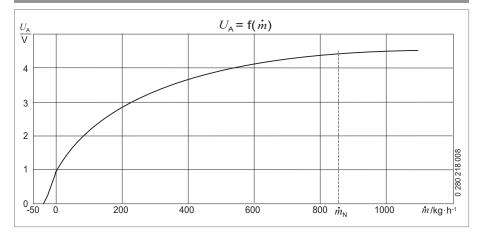
Part number

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
		10200000


Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number

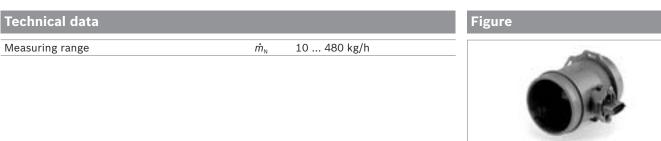
0 280 218 089


Technical data		Figure
Product text	Without ambient-temperature sensor.	
Measuring range	<i>ṁ</i> _ℕ -50 1100 kg/h	

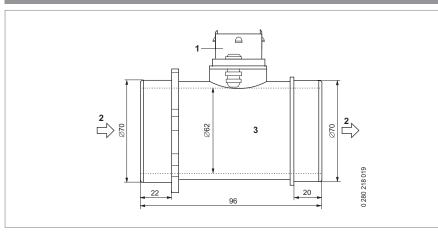
Dimensional drawing

- 1 Plug-in sensor
- 2 Flow direction
- 3 Measurement tube

Air-mass characteristic curve at ambient temperature

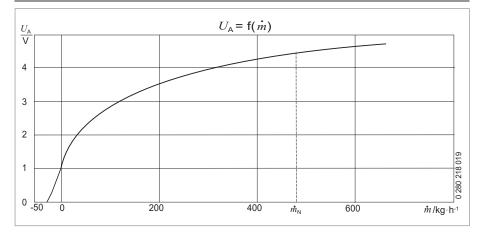

Part number

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599


Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number

0 280 218 113



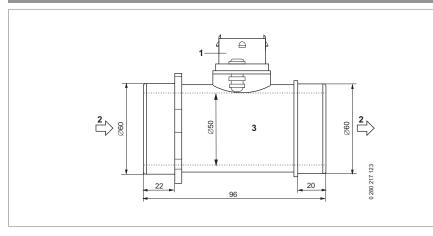
Dimensional drawing

- 1 Plug-in sensor
- 2 Flow direction 3 Measurement tube

Air-mass characteristic curve at ambient temperature

Part number

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599


Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Part number

0 280 218 119

Technical data		Figure
Product text	With ambient-temperature sensor.	
Measuring range	$\dot{m}_{\rm N}$ -15 480 kg/h	

Dimensional drawing

1 Plug-in sensor

2 Flow direction

3 Measurement tube

Air-mass characteristic curve at ambient temperature

Part number

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seals	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Bosch Automotive Aftermarket

Notes

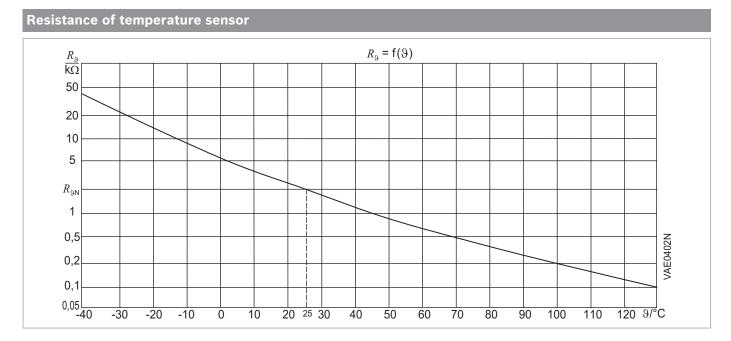
Hot-film air mass meter, type HFM 6

Measurement of air mass flow rate up to 1150 kg/h

Design

Air mass meters consist of a measurement tube into which the plug-in sensor with the sensor element is inserted. The dimensions of the measurement tube vary depending on the measuring range requirements. There are measurement tubes of different sizes and design to suit the required air throughput. In principle, it is also possible to integrate the plug-in sensor directly into the intake tract, for example in the air cleaner housing or intake connection.

The sensor element is located in the air flow (measurement duct) of the plug-in sensor and forms part of a Wheatstone bridge. The configuration is such that the inevitable contamination does not affect the flow of air around the sensor. This obviates the need for a self-cleaning process as always used to be necessary prior to starting with earlier hot-wire air mass meters.


Application

To comply with the applicable legislation, the pollutant levels in the exhaust gas from internal combustion engines must be minimized and the combustion process optimized. This involves mixing the air and fuel in a precisely defined ratio. It is therefore necessary to exactly record the air mass flow and transmit this in the form of an electrical signal to the control electronics. Other applications are in measurement, testing and control units for combustion systems of all kinds and in special gas engines. With appropriate calibration, air mass meters are also suitable for recording the mass flow rate of almost all nonaggressive gases.

Tec		T à F	1 2
166			

Rated supply voltage	$U_{\rm N}$	14V
Supply-voltage range	U_{v}	7,5 17 V
Relative accuracy ¹)	∆ṁ/ṁ	± 2 %
Temperature range ²)		-40 120 °C
Pressure drop at $\dot{m}_{_{ m N}}$	Δp	< 18 hPa
Current input	I _v	< 0,06 A
Vibration acceleration	av	≤ 180 m/s²
Time constant	τ ₆₃ ³)	≤ 10 ms
Time constant	τΔ ⁴)	≤ 30 ms

¹) For 0.04 ≤ m/m_N ≤ 1.3
 ²) Up to 130 °C for brief periods (≤ 3 min.).
 ³) Time required for step response of output voltage to 63% of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h.
 ⁴) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation |Δm/m| ≤ 5 %.

Hot-film air mass meter, type HFM 6

Measurement of air mass flow rate up to 1150 kg/h

Part number 0 280 218 176 **Technical data** Figure Measuring range -40 ... 620 kg/h ṁℕ **Dimensional drawing** 86,6 65 3 2 ८ 🦕 060 82 0 280 218 175 1 Plug-in sensor 16 20 2 Flow direction 100 3 Measurement tube Air mass characteristic curve at ambient temperature $\frac{T_{\rm M}}{\mu s}$ $\frac{J_{A}}{kHz}$ 500 10 $T_{\rm M} = f(\dot{m})$ $f_A = f(\dot{m})$ 400 8 300 6 200 4 2 521 812 082 0 *m*/kg·h⁻¹ 0 100 0 200 400 600 800 Accessories Part number Compact connector 1 928 403 736 4-pin Compact connector 5-pin 1 928 403 836 For Ø 0.5...1.0 mm²; Contents: 100 x Contact pins 1 928 498 056 Contact pins For Ø 1.5...2.5 mm²; Contents: 100 x 1 928 498 057 Single-wire seals For Ø 0.5...1.0 mm²; Contents: 10 x 1 928 300 599 Single-wire seals For Ø 1.5...2.5 mm²; Contents: 10 x 1 928 300 600 Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Measurement of air mass flow rate up to 1150 kg/h

Part number 0 281 002 764 **Technical data** Figure Measuring range ṁℕ -60 ... 800 kg/h **Dimensional drawing** 86,6 65 3 □> 2 2 0 0 281 002 763 1 Plug-in sensor 29,3 20 2 Direction of flow 90 Measurement tube 3 Air mass characteristic curve at ambient temperature $\frac{T_{M}}{\mu s}$ <u>____</u> kHz 10 500 $T_{\rm M} = f(\dot{m})$ $f_A = f(\dot{m})$ 400 8 6 300 200 4 100 00 100 200 300 400 500 600 700 Accessories Part number Compact connector 1 928 403 736 4-pin Compact connector 5-pin 1 928 403 836 For Ø 0.5...1.0 mm²; Contents: 100 x Contact pins 1 928 498 056 Contact pins For Ø 1.5...2.5 mm²; Contents: 100 x 1 928 498 057 Single-wire seals For Ø 0.5...1.0 mm²; Contents: 10 x 1 928 300 599 1 928 300 600 Single-wire seals For Ø 1.5...2.5 mm²; Contents: 10 x Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Measurement of air mass flow rate up to 1150 kg/h

Part number 0 281 002 802 **Technical data** Figure Measuring range -40 ... 620 kg/h m_ℕ **Dimensional drawing** 86,6 2 ⊂> 🗞 Ø70 76 ⊏∕2 3 0 281 002 802 1 Plug-in sensor 20,3 20 2 Flow direction 96 3 Measurement tube Air mass characteristic curve at ambient temperature $\frac{T_{M}}{\mu s}$ $\frac{f_{A}}{kHz}$ $f_{\rm A} = f(\dot{m})$ 500 10 $T_{\rm M} = f(\dot{m})$ 400 8 6 300 4 200 2 802 802 100 *m*/kg⋅h⁻¹0 [∞]₈₈ 0 100 500 300 400 600 200 Accessories Part number 1 928 403 736 Compact connector 4-pin Compact connector 5-pin 1 928 403 836 For Ø 0.5...1.0 mm²; Contents: 100 x Contact pins 1 928 498 056 Contact pins For Ø 1.5...2.5 mm²; Contents: 100 x 1 928 498 057 Single-wire seals For Ø 0.5...1.0 mm²; Contents: 10 x 1 928 300 599 For Ø 1.5...2.5 mm²; Contents: 10 x 1 928 300 600 Single-wire seals

Accessories are not included in the scope of delivery of the sensor and are therefore to be ordered separately as required.

Notes

Design

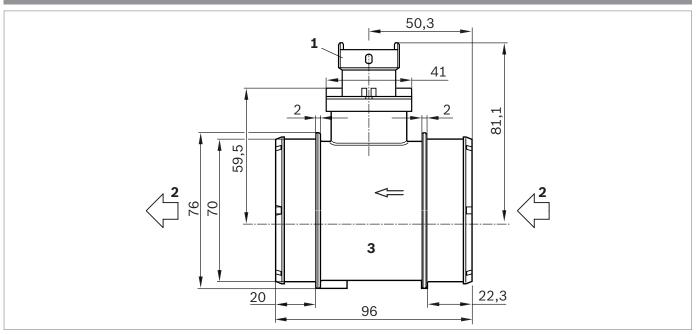
Air mass meters consist of a measurement tube into which the plug-in sensor with the sensor element is inserted. The dimensions of the measurement tube vary depending on the measuring range requirements. There are measurement tubes of different sizes and design to suit the required air throughput. It is basically also possible to integrate the plug-in sensor directly in the intake tract, for example in the air filter housing or intake connection.?The sensor element is located in the air flow (measurement duct) of the plug-in sensor and forms part of a Wheatstone bridge. The configuration is such that the inevitable contamination does not affect the flow of air around the sensor. This obviates the need for a self-cleaning process as always used to be necessary with earlier hot-wire air mass meters prior to starting.

Application

To comply with the pertinent legislation, the pollutant levels in the exhaust gas of internal combustion engines must be minimized and the combustion process optimized. This involves mixing the air and fuel in a precisely defined ratio. It is therefore necessary to exactly record the air mass flow and transmit this in the form of an electrical signal to the control electronics.?Other applications include measuring instruments, testers and control units for all types of combustion system as well as in special gas engines. Given appropriate calibration, an air mass meter is also suitable for recording the mass flow of almost all non-corrosive gases.

Part number

Technical data 250 ... 1050 kg/h Measuring range ṁℕ Rated supply voltage 14V $U_{\rm N}$ Supply-voltage range $U_{\rm v}$ 6 ... 17 V $\Delta \dot{m}/\dot{m} \pm 5\%$ Relative accuracy¹) Temperature range²) -40 ... 130 °C Pressure drop at $\dot{m}_{\rm N}$ < 12 hPa Δp Current input < 6 A $I_{\rm v}$ τ₆₃3) Time constant ≤ 10 ms $\tau \Delta^4$) Time constant ≤ 30 ms



1) for $0,04 \le \dot{m}/\dot{m}_{\rm N} \le 1,3$

³) short-time ($\leq 3 \min$, bin) to 130 °C. ³) Time required for step response of output voltage to 63% of final value given an abrupt change in air mass from

10 kg/h to 310 kg/h. ⁴) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation $|\Delta \dot{m}/\dot{m}| \le 5$ %.

Dimensional drawings

- 1 Plug-in sensor
- 2 Flow direction

3 Measurement tube

Bosch Automotive Aftermarket

Lambda sensor LSU 1 Measurement of oxygen content

- It is suitable for industrial applications such as waste gas measurements in gas and oil burners.
- ► Module CJ125: 1267379259 can be used for evaluation.
- The dual-cell wideband sensor is a new type of zirconium dioxide Lambda sensor which can be used for a broad Lambda range from λ > 0.7 to infinity (air).

Application

Combustion processes

- Oil burner
- Gas burner

Design and operation

The Lambda sensor consists of two cells. It is made up of a Nernst type potentiometric oxygen concentration cell and an amperometric oxygen pump cell. Nernst cells have the property that oxygen ions diffuse through their ceramic at high temperatures, as soon as there are differences in the partial oxygen pressure at both ends of the ceramic. The transport of ions results in an electrical voltage between them, which is measured using electrodes.

In an oxygen pump cell, the application of an electrical voltage to a zirconium dioxide ceramic "pumps" oxygen ions from the cathode to the anode. If the continued flow of oxygen molecules out of the exhaust gas to the cathode is prevented by a diffusion barrier, the so-called limit current condition means that a current saturation is reached above a pump voltage threshold. The resulting limit current is proportional to the oxygen concentration in the exhaust gas. In the oxygen sensor, the pump and Nernst cells are arranged in such a way that a diffusion gap of only around $10 - 50 \,\mu\text{m}$ exists between them. The gap is connected with the exhaust gas by a gas inlet hole and it acts as a diffusion barrier. This narrow diffusion duct also contains the porous platinum electrodes, one of the pump cells and one of the Nernst cells on the opposite side. The other electrode for the Nernst cell is located in a reference air duct and is exposed to the surrounding atmosphere by an aperture. Under normal conditions, the air here has an oxygen content of 20.9 percent by volume.

The components of the exhaust gas diffuse through the diffusion duct to the electrodes for the pump and Nernst cell, where they are brought to thermodynamic equilibrium. Control electronics record the Nernst voltage $U_{\rm N}$ in the concentration cell and supply the pump cell with a variable pump voltage $U_{\rm P}$. If $U_{\rm N}$ takes on a value of less than 450 mV, the exhaust gas is lean and the pump cell is supplied with a current that causes oxygen to be pumped out of the duct. By contrast, if the exhaust gas is rich, $U_N > 450$ mV and the flow direction is reversed, causing the cell to pump oxygen into the duct. An integrated module (CJ125) can be used for signal evaluation. As well as the controller for the pump flow and the controller that keeps the Nernst cell at 450 mV, this module includes an amplifier.

The sensor element is manufactured using thick-film techniques, which results in production distribution. This means that the characteristic curves for different sensors will vary. At an oxygen concentration of 0%, the output voltage is a uniform 0 V, as when using the evaluation circuit. However, at air the voltage scatters between approx. 6 and 8 V. This means that each sensor has to be individually calibrated so that a clear relationship between the measured oxygen concentration and the output voltage can be created. Calibration can be carried out on air in which the oxygen content is 20.9%. Calibration is recommended at each maintenance.

Explanation of characteristic quantities

- λ Air ratio
- $U_{\rm N}$ Nernst voltage
- U_{P} Variable pump voltage

Special accessory

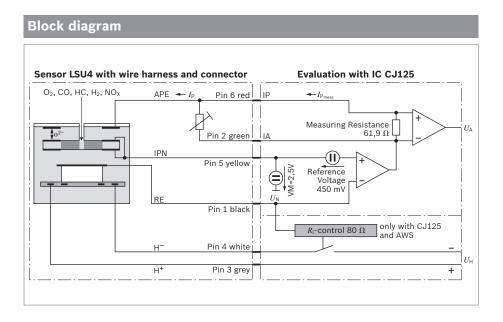
Connectors (mating connectors) are available under order number: 3623 05 K31V167 from

Karl Lumberg GmbH & Co Postfach 13 60 D-58569 Schalksmühle Tel.: 02355/83-01 Fax: 02355/83-263

Installation instructions

We recommend that the sensor element is installed in the flue gas tube suspended, i.e. vertically downward with the connections pointing upwards. A further option is to select an angular installation position of at least 10 from the horizontal (connector outlet upwards). This prevents liquid from accumulating between the sensor housing and the sensor element.

The sensor element should be used in condensation protection mode (standby mode). It is heated to prevent condensation of the moist exhaust gas on the sensor surface. The sensor temperature must be > 75C so that it lies above the dew point temperature.


The sensor is resistant to aggressive exhaust gases such as carbon monoxide, carbon dioxide, nitrogen oxide and low tem-

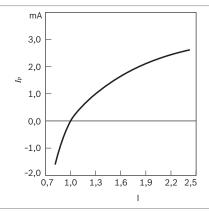
Lambda sensor LSU 1 Measurement of oxygen content

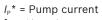
perature carbonization gas throughout its entire service life. However, if the sensor is exposed to lead, phosphorous, silicon, halogens or very high sulfur concentrations, this can reduce its service life.

Warranty claims

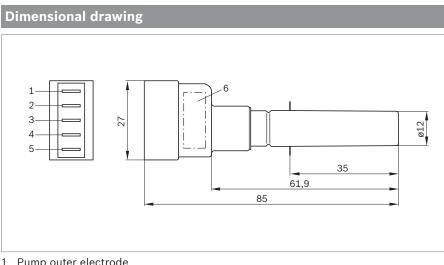
As set out in the general terms of delivery A 17, warranty claims can only be accepted if residue-free gaseous hydrocarbons and light fuel oil in accordance with DIN 51603 are used as permissible fuels.

Lambda sensor LSU 1 Measurement of oxygen content


Part number


Technical data	
Measuring range in λ	0,7 ∞
Measuring range for oxygen concentration	0 21 %
Rated heating-voltage value U_{H} (DC or AC voltage)	9,5 V ± 0,5 V
Max. heating power	≤ 15 W
Typical heat output in operation	11 W
Max. switch-on current at -40 °C	≤ 5 A
Heater resistance at room temperature	3 Ω ± 0,5 Ω
Protection of heating circuit with slow-blow fuse	4 A
Sensor storage temperature	- 40 °C + 80 °C
Permissible exhaust-gas temperature at sensor	≤ 250 °C
Permissible ambient temperature	
at sensor housing (connector side)	≤ 80 °C
Temperature of heated sensor element in exhaust-gas area	≤ 800 °C
Reaction time τ with abrupt change of λ by 0.2?	≤ 5 sec.
Permissible vibration capacity during operation	≤ 50 m/s²
Permissible short-term impact capacity	≤ 300 m/s²
Service life in operation	≥ 12.000 hours
Service life in standby mode	≥ 50.000 hours
Output signals with CJ125	
Output voltage at λ = 0.8 1,2	<i>U</i> _A ≈ 0,5 2 V
Output voltage at λ = 1; O ₂ = 0.0 %	<i>U</i> _A = 1.5 V
Output voltage at $\lambda \rightarrow \infty;~O_2$ = 20,9 %	<i>U</i> _A ≈ 4.7 V

0 258 004 010



Characteristic curve

 λ = Air ratio

- 1 Pump outer electrode
- Inner Pump-/Nernst electrode 2
- 3 Reference electrode
- 4 Sensor heater +
- 5 Sensor heater -

Notes

Lambda sensor LSU 4.9

Measurement of oxygen content

- The wideband Lambda sensor LSU is a planar ZrO₂ dual-cell limit current sensor with integrated heater.
- It is used for measuring the oxygen content and the λ value of exhaust gases in vehicle engines.
- Thanks to a steady characteristic curve in the range λ = 0.65 to air, it is universally applicable for λ = 1 and for other λ ranges.

Application

Engine management

- Gas engines
- Block-type thermal power stations
- Diesel engines
- Gasoline engines
- Lean combustion engines

Industrial processes

- Tempering furnaces
- Chemical industry
- Packaging equipment
- Process engineering
- Drying plants
- Metallurgy
- Measurement and analysis processes
- Flue gas measurement
- Gas analysis
- Determination of Wobbe indexIncineration plants
- Wood
- Biomass

Design and operation

The LSU broadband Lambda sensor is a planar ZrO₂ two-cell limit current sensor with integral heater. It is suitable for measuring the oxygen content and the λ value of exhaust gases in vehicle engines (gasoline and diesel). A constant characteristic curve in the range from λ = 0.65 to air makes it suitable for universal use for λ =1 and for other λ ranges. The connector module includes a trimming resistor, which determines the characteristics of the sensor and is necessary for the sensor to function. To function, the LSU requires special operating electronics (e.g. AWS. LA4 or IC CJ125 evaluation circuit) and may only be operated in conjunction with these.

The Lambda sensor consists of two cells. It is made up of a Nernst type potentiometric oxygen concentration cell and an amperometric oxygen pump cell. Nernst cells have the property that oxygen ions diffuse through their ceramic at high temperatures, as soon as there are differences in the partial oxygen pressure at both ends of the ceramic. The transport of ions results in an electrical voltage between them, which is measured using electrodes.

The components of the exhaust gas diffuse through the diffusion duct to the electrodes for the pump and Nernst cell, where they

are brought to thermodynamic equilibrium. Control electronics record the Nernst voltage $U_{\rm N}$ in the concentration cell and supply the pump cell with a variable pump voltage $U_{\rm P}$. If $U_{\rm N}$ takes on a value of less than 450 mV, the exhaust gas is lean and the pump cell is supplied with a current that causes oxygen to be pumped out of the duct. By contrast, if the exhaust gas is rich, $U_N > 450$ mV and the flow direction is reversed, causing the cell to pump oxygen into the duct. An integrated module (CJ125) can be used for signal evaluation. As well as the controller for the pump flow and the controller that keeps the Nernst cell at 450 mV, this module includes an amplifier.

The sensor element is manufactured using thick-film techniques, which results in production distribution. This means that the characteristic curves for different sensors will vary. At an oxygen concentration of 0%, the output voltage is a uniform 0 V, as when using the evaluation circuit. However, at air the voltage scatters between approx. 6 and 8 V. This means that each sensor has to be individually calibrated so that a clear relationship between the measured oxygen concentration and the output voltage can be created. Calibration can be carried out on air in which the oxygen content is 20.9%. Calibration is recommended at each maintenance.

Lambda sensor LSU 4.9 Measurement of oxygen content

Installation instructions

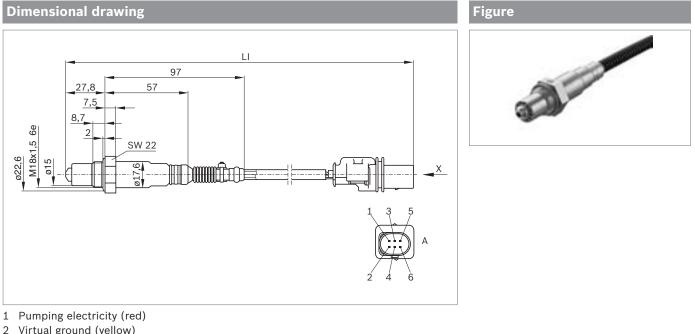
- Installation in exhaust gas pipes at a location exhibiting a representative exhaust gas composition given compliance with the specified temperature limits.
- The ceramic sensor element warms up rapidly after switching on the sensor heating. Once the ceramic element has warmed up, the occurrence of condensate, which could damage the hot ceramic sensor element, must be avoided.
- If possible, the installation position should be vertically upwards, however at least at an angle of 10 ° with respect to the horizontal. This prevents the accumulation of liquid between the sensor housing and sensor element. An angle of 90 ° is desirable, however no greater than 90 ° + 15 ° gas inlet hole with respect to the exhaust gas flow or 90 ° - 30 °. Other angular positions are to be assessed separately if applicable.
- Tightening torque: 40 60 Nm, the material properties and strength of the thread must be designed accordingly.

Explanation of characteristic quantities

- λ $\,$ Air ratio $\,$
- $U_{\rm N}$ Nernst voltage
- U_{P} Variable pump voltage

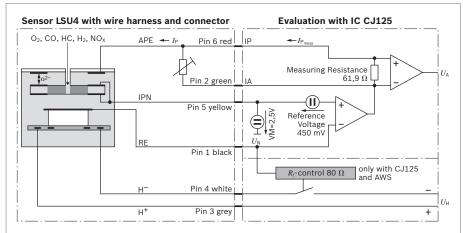
Lambda sensor LSU 4.9

Measurement of oxygen content

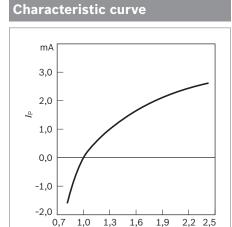

Sensor element	
Nominal internal resistance of Nernst cell R _{in} As new (operating point, calibration value), (measurement with 14 kHz):	300.0
Max. current load of Nernst cell Continuous AC ?($f = 14$ kHz) for $R_{i,N}$ measurement	≤ 250 μA
Recommended reference pump current (sustained)	= 20 µA
Max. pump current to pump cell for rich-gas signal ($\lambda \ge 0.65$)	≥ - 9 mA
Max. pump current to pump cell for lean-gas signal (air)	≤ 6 mA
Heater supply Nominal voltage	7,5 V
Nominal heat output at 7.5 V Heating voltage in steady-state condition with air	approx. 7,5
Typical cold resistance of heater at room temperature, including cable and connector	3,2 Ω
Minimum cold resistance of heater at -40C	1,8 Ω
When switching on the heater, the heating power is to be limited as follows:	
Heater voltage in condensate phase U_{Heff}	≤ 2 V
Maximum permissible effective heater voltage Ufor attainment of operating point briefly \leq 30 s (200 h cumulated)	≤ 13 V
Maximum permissible effective heater voltage Ufor attainment of operating point steady-state	≤ 12 V
Maximum permissible vehicle electrical system voltage U _{Ratt.max}	≤ 16,5 V
Minimum vehicle electrical system voltage	≥ 10,8 V
Operating temperatures	
Exhaust gas (T _{Exhaustgas})	≤ 930 °C
Hexagon at sensor housing (T _{Hexagon})	≤ 600 °C
Cable outlet (PTFE sheath) - sensor side (PTFE socket, T _{Grommet})	≤ 250 °C
Cable outlet (PTFE sheath) - cable side (upper sleeve, T _{upperhose})	≤ 200 °C
Cable and protective sheathing	≤ 250 °C
Connector	≤ 120 °C
Maximum temperatures (max. 250 h cumulative over service life)	
Exhaust gas (T _{Exhaustgas})	≤ 1030 °C
Hexagon at sensor housing (T _{Hexagon})	≤ 680 °C
Maximum temperatures (max. 40 h cumulative over service life in intervals of max. 10 min)	
Cable outlet (PTFE sheath) - sensor side (PTFE socket, T _{Grommet})	≤ 280 °C
Cable outlet (PTFE sheath) - cable side (upper sleeve, T _{upperhose})	≤ 230 °C
Cable and protective sheathing	≤ 280 °C
Exhaust gas back pressure	
Continuous operation	≤ 2,5 bar
Brief maximum pressure, max. 250 h accumulated over service life	≤ 4 bar
Note: If the operating temperatures or the permissible exhaust gas back pressure	
for continuous operation are exceeded, the sensor accuracy is impaired.	
Permissible oscillating load	
Stochastic oscillations (peak value)	≤ 1000 m/s²
Sinusoidal oscillations	≤ 300 m/s ²
	_ 000 m/0
Readiness for operation Approximate value for sensor ON time ("Light-off")	≤ 10 s
	. 10.3

Lambda sensor LSU 4.9

Measurement of oxygen content


Part number

0 258 017 025



- Virtual ground (yellow) 2
- 3 Heater clock (white)
- 4 Heater clock + U Batt (grey)
- 5 Trimming potentiometers (green)
- 6 Nernst voltage (black)

The evaluation module CJ 125 is required for operation of the LSU 4.9. Further details on request.

 $I_{\rm P}$ = Pump current

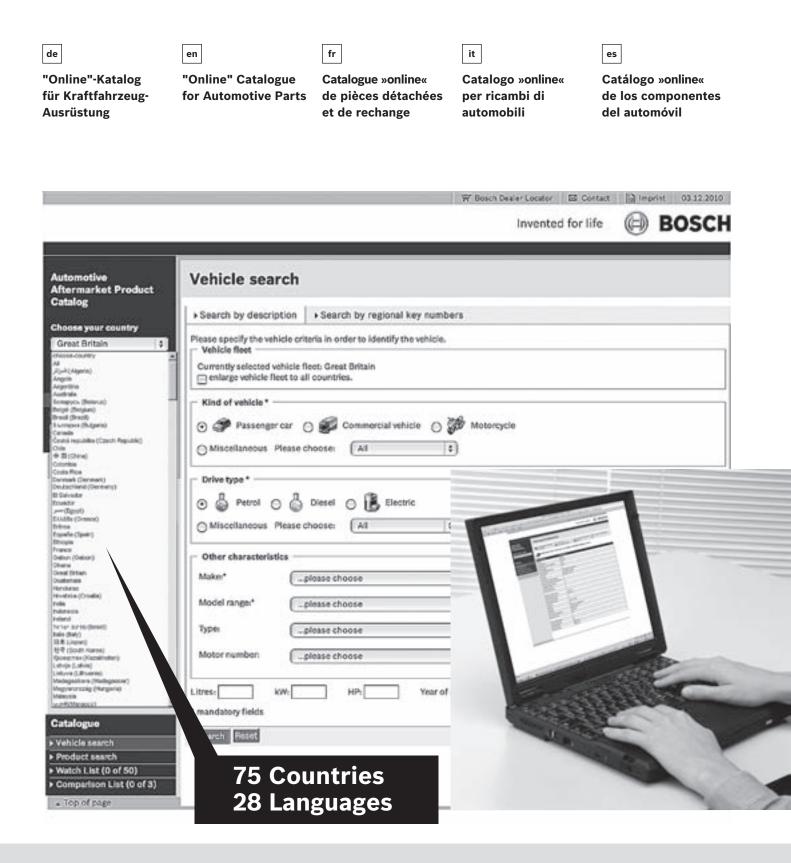
 λ = Air ratio

Accessories

Mating connector parts set

Connector housing, contacts, grommet

Order number 1 986 280 016


Т

List of part numbers

Part number	Page	Part number	Page	Part number	Page
0 232 103 097	19	0 265 005 642	16	0 281 002 593	51
0 232 103 099	20	0 265 005 764	17	0 281 002 616	52
0 258 004 010	114	0 265 007 527	28	0 281 002 667	24
0 258 017 025	119	0 265 007 544	29	0 281 002 668	61
0 261 210 303	21	0 272 230 424	37	0 281 002 671	70
0 261 210 318	22	0 280 005 620	85	0 281 002 693	53
0 261 210 329	23	0 280 122 024	13	0 281 002 704	94
0 261 230 083	46	0 280 130 026	95	0 281 002 755	76
0 261 230 093	40	0 280 130 039	89	0 281 002 764	107
0 261 230 105	47	0 280 218 087	99	0 281 002 767	71
0 261 230 109	56	0 280 218 089	100	0 281 002 772	41
0 261 230 110	57	0 280 218 113	101	0 281 002 787	77
0 261 230 112	58	0 280 218 119	102	0 281 002 802	108
0 261 230 121	43	0 280 218 176	106	0 281 002 841	72
0 261 230 145	80	0 281 002 209	92	0 281 002 842	73
0 261 230 249	81	0 281 002 238	67	0 281 002 930	74
0 261 230 255	82	0 281 002 244	59	0 281 002 937	75
0 261 230 274	83	0 281 002 316	60	0 281 006 054	111
0 261 230 275	84	0 281 002 398	69	0 281 006 101	25
0 261 231 173	32	0 281 002 412	93	0 281 006 243	86
0 261 231 176	33	0 281 002 421	98	0 281 006 282	62
0 261 231 196	34	0 281 002 487	48		
0 261 545 053	65	0 281 002 522	68		
0 265 005 303	66	0 281 002 566	49		
0 265 005 411	10	0 281 002 573	50		

Notes

www.bosch-automotive-catalog.com

Einfacher und schneller Zugriff auf Kfz-Ausrüstungsdaten von Bosch. Easy and quick access to vehicle application data from Bosch.

Accès facile et rapide aux données de rechange automobile Bosch. Ricerca semplice e veloce dei dati Bosch di equipaggiamento veicoli. Fácil y rápido acceso a la información de equipamiento Bosch para vehículos.

Bosch contacts worldwide for sales and advice

Austria

Robert Bosch AG RBOS/SCC Mr. Andreas Chadt Geiereckstrasse 6 AT - 1100 Wien Tel.: +43 (0)1 797 2261 16 Fax: +43 (0)1 797 2225 6116 Email: Andreas.Chadt@at.bosch.com

Belgium

Robert Bosch SA/NV RBBN/SOE3 Mr. Marc Jonckheere Rue Henri Genessestraat 1 BE - 1070 Bruxelles Tel.: +32 (0)2 525 5271 Fax: +32 (0)2 528 9430 Email: Marc.Jonckheere@be.bosch.com

Brazil

Robert Bosch Ltda AA/SIS-LA Mr. Renato Alves Rod Anhanguera Km 98 BR - 13065-900 Campinas, Sao Paulo Tel.: +55 (0)19 210 329 58 Fax: +55 (0)19 210 330 62 Email: Renato.Alves@br.bosch.com

Czech Republic

Robert Bosch Odbytova s.r.o. AA/SEM-SIS1 Mr. David Komrska Pod visnovkou 35 CZ - 140 00 Prague Tel.: +420 (0)2 613 005 04 Fax: +420 (0)2 613 005 24 Email: David.Komrska@cz.bosch.com

China

Bosch Trading (Shanghai) Co., Ltd AA/SOE-CN Mr. Tiejun Guan 333 Fuquan (N.) Road CN-200335 Shanghai Tel.: +86 (21) 2218-8647 Fax: +86 (21) 6888-2211 Email: Tiejun.Guan@cn.bosch.com

Denmark

Robert Bosch AA/SDK Mrs Eda Hojenski Telegrafvej 1 DK - 2750 Ballerup Tel.: +45 (0)44 898 321 Fax: +45 (0)44 898 680 Email: Eda.Hojenski@dk.bosch.com

Finland

Robert Bosch Oy AA/SIS1 FI Mr. Pekka Manninen Aeyritie 8 E 01510 Vantaa Tel.: +385 (10) 480 827 8 Fax: +358 (10) 480 835 7 Email: Pekka.Manninen@fi.bosch.com

France

Bosch France SAS AA/SIS-Fr Mr. Olivier Theron 126, Rue de Stalingrad FR-93705 Drancy Cedex Tel.: +33 (0)14-315 285 Fax: +33 (0)14-315 469 Email: Olivier.Theron@fr.bosch.com

Germany

Robert Bosch GmbH AA/SIS1 Mr. Michael Bode Auf der Breit 4 DE - 76227 Karlsruhe Tel.: +49 (0)721 942 2278 Fax: +49 (0)721 942 2643 Email: Michael.Bode@de.bosch.com

Israel

Ledico Technologies LTD. Mr. Adi Tasman 31 Lazarov Str. P.O.B. 17091 IL - 75654 Rishon Le Zion Tel.: + 972 (0)3 963 0017 Fax: + 972 (0)3 963 0066 Email: Tasman@lediko.com

Italy

Robert Bosch SPA AA/SIT Mr. Claudio Vailati Via M.A. Colonna, 35 IT - 20149 Milano Tel.: +39 (0)2 369 623 87 Fax: +39 (0)2 369 627 44 Email: Claudio.Vailati@it.bosch.com

Japan

Bosch Corporation AA/SIS-Jp Mr. Satoshi Okuyama 2-3-10 Nishihon-mach Nishi-ku JP-550-00005 Osaka Tel.: +81 (6) 6532-0957 Fax: +81 (6) 6541-2297 Email: Satoshi.Okuyama@jp.bosch.com

Korea

Robert Bosch Korea RBKR/SOK Mr. Hungdschun Ko 298 Bojeong-dong Giheung-gu KR - 446-913 Yongin-si, Gyeonggi-do Tel.: +82 (0)31 260 3530 Fax: +82 (0)31 260 3529 Email: Hungdschun.Ko@kr.bosch.com

Norway

Robert Bosch AS AA/SEN3-SKI Mr. Erling Voll Berghagan 1 NO - 1405 Langhus Tel.: +47 (0)64 878 938 Fax: +47 (0)64 878 931 Email: Erling.Voll@no.bosch.com

Poland

Robert Bosch Sp. z.o.o. AA/SPL1 Mr. Andrzej Michocki Jutrzenki 105 PL-02231 Warszawa Tel.: +48 (0)22-715 4518 Fax: +48 (0)22-715 4597 Email: Andrzej.Michocki@pl.bosch.com

Sweden

Robert Bosch AB RBSN/SSC Mr. Erik Dahlen Vestagen 2A SE-41664 Göteborg Tel.: +46 (31) 722-5240 Fax: +46 (31) 722-5299 Email: Erik.Dahlen@se.bosch.com

Switzerland

Robert Bosch AG RBCH/SOE1 Mr. Gerold Brunner Industriestrasse 31 CH - 8112 Otelfingen Tel.: +41 (0)44 847 1531 Fax: +41 (0)44 847 1529 Email: Gerold.Brunner@ch.bosch.com

Spain

Robert Bosch Espana S.A. AA/SiS1-IB Mrs Miriam Franco Estebanez Hermanos Garcia Noblejas 19 ES - 28037 Madrid Tel.: +34 (0)91 410 4079 Fax: +34 (0)91 327 9857 Email: Miriam.Franco@es.bosch.com

Türkey

Bosch San. Ve Tic. A.S. AA/SOE-TR Mr. Fatih Meric Maslak Mh. Ahi Evran Cd. Polaris Plaza No: 21 Kat 22 TR – 34398 Istanbul Tel.: +90 (0)212-335 0713 Fax: +90 (0)212-346 0043 Email: Fatih.Metric@tr.bosch.com

Hungary

Robert Bosch Kft AA/SEA2 Mr. Tudor Armasu Gyoemroei ut 120. HU - 1103 Budapest Tel.: +36 (0)1 431 3903 Fax: +36 (0)1 431 3878 Email: Tudor.Armasu@ro.bosch.com

Romania

Robert Bosch SRL AA/SEA Mr. Tudor Armasu Horia Macelariu Str. 30-34 RO-013937 Bucharest Tel.: +40 (21) 4057 621 Fax: +40 (21) 2331 313 Email: Tudor.Armasu@ro.bosch.com

Great Britain

Robert Bosch Ltd AA/SIS1-GB Mr. Neil Hawes P.O.Box 98; Broadwater Park; North Orbital Road UK - UB9 5HJ Denham Tel.: +44 (0)1895 838 760 Fax: +44 (0)1895 839 760 Email: Neil.Hawes@uk.bosch.com

USA

Robert Bosch LLC AA/SHD-NA Mr. Kenn Langosch 2800 South 25th Avenue US - 60155-4594 - Broadview, IL Tel.: +1 (0)708 865 5286 Fax: +1 (0)708 865 5360 Email: industrial.business@us.bosch.com

124 | Inquiry data sheet

If you have any special requirements that are not covered by our range of sensors, please specify this in the data sheet below. In the event of any modifications, please state the known product here.

Please use this printed data sheet as a master copy and return the filled out copy.

Bosch part number:			return the med out copy.
Address:		Company: Department:	
Your reference/dated:	Our dept./person in charge:	Telephone (extension):	Date:
Project description:			
New project:		Specification available:	□ Yes □ No
Replacement for existing solu	ution:	Drawing available:	□ Yes □ No
Competitors used:		External sample available:	🗆 Yes 🗆 No
Required quantity:	□ One-offunits	Type part no.:	
Required delivery date:		Forecast service life produced	d:
Specified quantity on followin	ng dates:	Customer price expectation:	
Date:		Notes:	
Quantity:			
□ Annualunits	□ Monthlyunits		
Sensor requirements:			
Measurement value:			

Additional conditions:

Conditions of use:

Remarks: